
Dynamically Scheduled Memory Operations in
Static High-Level Synthesis

Robert Szafarczyk, Syed Waqar Nabi and Wim Vanderbauwhede
School of Computing Science
University of Glasgow, UK

Email: {robert.szafarczyk, syed.nabi, wim.vanderbauwhede}@glasgow.ac.uk

Abstract—Dynamically scheduled high-level synthesis (HLS)
achieves higher throughput on codes with unpredictable memory
accesses compared to static HLS. However, dynamic scheduling
results in circuits that use more resources and have a slower
critical path, even if only a small part of the circuit exhibits
dynamic behavior. In this extended abstract, we propose to
introduce dynamically scheduled memory operations into static
HLS. Our goal is to reach the same throughput as dynamic
HLS on codes with irregular memory accesses while achieving
comparable resource usage and critical paths as static HLS.

I. LIMITATION OF MODULO SCHEDULING

A loop schedule in static HLS is obtained using modulo
scheduling [1], which arrives at a minimum loop initiation
interval (II) by calculating for each recurrence i in the Data
Dependence Graph (DDG):

II = maxi⌈delayi/distancei⌉,

where the delay is the sum of instruction latencies on the re-
currence path, and distance is the minimum iteration distance
between the definition of the value calculated by the recurrence
and its use. Since modulo scheduling has to arrive at a single II
for the loop, it has to necessarily over-approximate if the delay
or dependence distance are unknown, for example if memory
accesses are data dependent:

f o r (i n t i = 0 ; i < N; ++ i)
d a t a [i d x [i]] = f (d a t a [i d x [i]]) ;

II. DYNAMIC MEMORY OPERATIONS IN STATIC HLS
Dynamically scheduled memory operations require runtime

memory disambiguation machinery such as a Load-Store
Queue (LSQ) [2], which relies on the separation of memory
address generation from accesses for optimal operation. Such
a separation is natural in dataflow circuits. To achieve the same
effect in modulo-scheduled HLS, we propose to decouple the
address generation instructions into its own loop, similar to the
principle of decoupled access/execute architectures. Memory
requests from the address generation loop, and the actual loads
and stores are connected to an LSQ via latency-insensitive
channels, as presented in fig. 1. Since replacing loads and
stores with latency-insensitive channel read/writes removes
the inter-iteration memory dependencies, modulo scheduling
will be able to achieve an II of 1 if no other restrictions are
found. The latency-insensitive communication ensures that a
component will stall if a memory request needs to wait.

Address Generation

loop:
 loadRequest::write()
 storeRequest::write()

Compute

loop:
 loadValue::read()
 storeValue::write()

LSQ

ldReq

stReq

ldVal

stVal

Control-flow equivalent

Fig. 1. The communication pattern between decoupled address generation, a
Load-Store Queue (LSQ), and compute. The channels are latency-insensitive.
Each component is a seperate modulo-scheduling instance.

The problem of LSQ request ordering is solved by the de-
sign of our LSQ, which is based on tagged memory operations
– each load and store request is tagged with an integer value
which represents the state of the memory at that point; stores
increment the tag before making a request, loads use the tag
directly. The tag can be used to cheaply disambiguate loads,
i.e. a load request i will wait if for any store request k:

ldReqi.addr = stReqk.addr & ldReqi.tag ≥ stReqk.tag.

It is not always possible or profitable to decouple the
address-generating instructions. Given a set of address-
generating instructions IGEN for a given address, and a set of
memory access instructions IACCESS using addresses from
IGEN , we decide to decouple the IGEN instructions if:

∀i ∈ IGEN where i is used by a store, i is not control
nor data dependent on any instruction j, such that there
is a DDG path from an instruction k ∈ IACCESS to j.

In other words, if the execution of a store, or its address
calculation, depends on the value of a load from the same base
address, then decoupling is not applicable. This restriction is
not a limitation of our approach, since even a fully dynamic
HLS tool would have to stall in such a situation.

Conclusion: We proposed an approach for introducing dy-
namically scheduled memory operations into static HLS. Our
technique allows us to dynamically schedule only the part of
a circuit that exhibits dynamic behavior, keeping the rest of
the circuit static.

REFERENCES

[1] A. Canis, S. D. Brown, and J. H. Anderson, “Modulo sdc scheduling
with recurrence minimization in high-level synthesis,” in International
Conference on Field Programmable Logic and Applications (FPL), 2014.

[2] L. Josipovic, P. Brisk, and P. Ienne, “An out-of-order load-store queue
for spatial computing,” ACM Trans. on Embedded Comp. Systems, 2017.

	Limitation of Modulo Scheduling
	Dynamic Memory Operations in Static HLS
	References

