
Compiler Support for Speculation in Decoupled
Access/Execute Architectures

Robert Szafarczyk
University of Glasgow

Glasgow, United Kingdom
robert.szafarczyk@glasgow.ac.uk

Syed Waqar Nabi
University of Glasgow

Glasgow, United Kingdom
syed.nabi@glasgow.ac.uk

Wim Vanderbauwhede
University of Glasgow

Glasgow, United Kingdom
wim.vanderbauwhede@glasgow.ac.uk

Abstract
Irregular codes are bottlenecked by memory and communi-
cation latency. Decoupled access/execute (DAE) is a common
technique to tackle this problem. It relies on the compiler
to separate memory address generation from the rest of the
program, however, such a separation is not always possible
due to control and data dependencies between the access
and execute slices, resulting in a loss of decoupling.

In this paper, we present compiler support for speculation
in DAE architectures that preserves decoupling in the face
of control dependencies. We speculate memory requests in
the access slice and poison mis-speculations in the execute
slice without the need for replays or synchronization. Our
transformation works on arbitrary, reducible control flow
and is proven to preserve sequential consistency. We show
that our approach applies to a wide range of architectural
work on CPU/GPU prefetchers, CGRAs, and accelerators,
enabling DAE on a wider range of codes than before.

CCS Concepts: • Hardware→ Emerging languages and
compilers; • Software and its engineering→ Compilers.

Keywords: decoupled access/execute; compiler speculation

ACM Reference Format:
Robert Szafarczyk, Syed Waqar Nabi, and Wim Vanderbauwhede.
2025. Compiler Support for Speculation in Decoupled Access/Ex-
ecute Architectures. In Proceedings of the 34th ACM SIGPLAN In-
ternational Conference on Compiler Construction (CC ’25), March
1–2, 2025, Las Vegas, NV, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3708493.3712695

1 Introduction
Irregular codes are characterized by data-dependent memory
accesses and control flow, for example:

for (int i = 0; i < N; ++i)

if (C[i] > 0)

A[idx[i]] = f(A[idx[i]]);

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
CC ’25, Las Vegas, NV, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1407-8/25/03
https://doi.org/10.1145/3708493.3712695

Address
Generating

Unit

Data
Unit

Compute
Unit

Load Request

for (i = 0; i < N; ++i)
  if (C[i] > 0)
    send_ld_addr(A + idx[i])
    send_st_addr(A + idx[i])

for (i = 0; i < N; ++i)
  if (C[i] > 0)  
    a = consume_ld_val()
    send_st_val(f(a))

Access Execute

Store Request

Load Value

Store Value

(a)An architecture with decoupled address generation, memory
access, and compute.
Address

Generating
Unit

Data
Unit

Compute
Unit

Load Request

for (i = 0; i < N; ++i)
  send_ld_addr(A + idx[i])
  if (consume_ld_val() > 0)
    send_st_addr(A + idx[i])

for (i = 0; i < N; ++i)
  a = consume_ld_val()
  if (a > 0)
    send_st_val(f(a))

Store Request
Load Value

Store Value
Load Value

(b) Loss-of-decoupling between address generation and mem-
ory access due to a dependency on the memory value.
Address

Generating
Unit

Data
Unit

Compute
Unit

for (i = 0; i < N; ++i)
  send_ld_addr(A + idx[i])
  // speculative request  
  send_st_addr(A + idx[i])

for (i = 0; i < N; ++i)
  a = consume_ld_val()
  if (a > 0)
    send_valid_st_val(f(a))
  else
    send_invalid_st_val()

Load Value

{Store Value,
Valid Bit}

Load Request

Store Request

(c) Our contribution: compiler support for speculation removes
loss-of-decoupling due to control dependencies.

Figure 1. A decoupled access/execute architecture template.

This code has unpredictable control flow that causes frequent
branch mis-predictions on CPUs and thread divergence on
GPUs. Because of these limitations, and challenges with
Moore’s Law and Dennard performance scaling, computer
architects are interested in adding CPU/GPU structures to
accelerate such code patterns, or even to use accelerators
specialized for a given algorithm [26].

Many of the proposed architectures follow the decades-old
idea of a Decoupled Access/Execute (DAE) architecture shown
in Figure 1. In DAE, memory accesses are decoupled from
computation to avoid stalls resulting from unpredictable
loads [51]. The address generation unit (AGU) sends load
and store requests to the data unit (DU), while the DU sends
load values to and receives store values from the compute
unit (CU). All communication is FIFO based and ideally the
AGU to DU communication is one-directional, allowing the

https://orcid.org/0009-0007-8883-1747
https://orcid.org/0000-0003-3835-4851
https://orcid.org/0000-0001-6768-0037
https://doi.org/10.1145/3708493.3712695
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3708493.3712695


CC ’25, March 1–2, 2025, Las Vegas, NV, USA Robert Szafarczyk, Syed Waqar Nabi, and Wim Vanderbauwhede

RAW check 0send ld addr 0
send st addr 0 send ld addr 1

send st addr 1 send ld addr 2

Load Initiation Interval = 1

RAW check 1
RAW check 2

DU stage
Legend:

AGU stage

(a) Pipeline of decoupled address generation from Figure 1a.

send ld addr 0 send st addr 0consume ld 0 if a < MAX
send ld addr 1

Load Initiation Interval = 4

RAW check 0
RAW check 1Waiting for 

store address

(b) Pipeline of non-decoupled address generation from Figure 1b.

Figure 2. Comparison of a decoupled and non-decoupled
address generation. Non-decoupled address generation re-
sults in a later arrival of the store address, which stalls the
RAW check for the next load, lowering load throughput.

address streams from the AGU to run ahead w.r.t the CU.
Figure 1a shows an example of such a DAE architecture
implementing the earlier code snippet.
DAE is a general technique applicable to many computa-

tional models: it is used in specialized FPGA accelerators gen-
erated fromHigh-Level Synthesis (HLS) [11–13, 15, 16, 21, 54,
55]; in Coarse Grain Reconfigurable Architectures (CGRAs)
[20, 27, 37, 39, 43, 45, 46, 61]; and in CPU/GPU prefetchers
[3, 5, 17, 18, 24, 38, 47, 59]. For example, NVIDIA introduced
hardware-accelerated asynchronous memory copies [3]. The
CUDA programmer can provide a “copy descriptor” of a ten-
sor to copy and the hardware will run ahead and generate
the corresponding addresses in a Tensor Memory Unit.

The common denominator of all these works is that they
rely on either the programmer or the compiler to decouple
address-generating instructions from the rest of the program.
However, it has long been recognized that such a decoupling
is not always possible [9, 57]. If any of the address-generating
instructions for array A depend on a value loaded from A,
then there is a loss-of-decoupling (LoD) [25]. Access patterns
such as A[f(A[i])] are rare, but control dependencies that
involve loads from A are common. For example, consider
replacing C[i] with A[i] in our running example:

for (int i = 0; i < N; ++i)

if (A[i] > 0)

A[idx[i]] = f(A[idx[i]]);

Here, there is a LoD, because the A store is control-dependent
on a branch that loads from A. Whereas before the load from
C could be prefetched, now the AGU/DU communication is
synchronized, because the AGU waits for A values from the
DU before deciding if a store address should be generated,
as shown in Figure 1b. In turn, the load waits for the store
address to ensure that there is no aliasing—the store address
is needed for memory disambiguation. As a result, the AGU
cannot run ahead of the CU anymore, resulting in decreased
pipeline parallelism, which Figure 2 illustrates.

One approach for restoring decoupling in this case is con-
trol speculation. As shown in Figure 1c, we can hoist the

store request out of the if -condition in the AGU (specula-
tion), and later poison the store in the CU on mis-speculation
(store invalidation). However, it is unclear how the compiler
should coordinate the speculation and recovery transfor-
mations across two distinct control-flow graphs. While the
example from Figure 1c is trivial, the task quickly becomes
complicated with more speculated stores and nested control
flow, as we demonstrate in the next section. The key chal-
lenge here is to guarantee that the order of store requests
sent from the AGU matches the order of store values or kill
signals sent from the CU on all control-flow paths.
General compiler support for speculated stores in DAE

architectures is an open question that we tackle in this paper,
making the following contributions:

• We give a formal description of the fundamental rea-
sons why address generation cannot always be decou-
pled from the rest of the program (§4).
• We describe compiler support for speculative memory
in DAE architectures, solving the LoD problem due
to control dependencies. We propose two algorithms:
one for speculating memory requests in the AGU, and
one for poisoning mis-speculations in the CU (§5).
• We prove that our speculation approach preserves the
sequential consistency of the original program and
does not introduce deadlocks (§6).
• We show that our work enables DAE on a wider class
of codes than before, with applications in CPU/GPU
prefetchers, CGRAs, and FPGA accelerators.
• We evaluate our DAE speculation approach on accel-
erators generated from HLS implementing codes from
the graph and data analytics domain. We achieve an
average 1.9× (up to 3×) speedup over the baseline HLS
implementations. We show that our approach has no
mis-speculation penalty and minimal code size impact
(average accelerator area increase < 5%) (§8).

2 Motivating Example
In this brief section, we show why an obvious approach to
speculation in DAE architectures is incorrect.

The FIFO-based nature of DAE requires that the order of
memory requests (speculative or not) generated in the AGU
matches exactly the order of load/store values (poisoned or
not) in the CU. The motivating example in Figure 1c contains
just one speculative store and one path through the compute
CFG where the speculation becomes unreachable, making
the problem of ordering trivial in that case.
Consider the more complex code in Figure 3a with three

stores 𝑠0, 𝑠1, and 𝑠2. Speculating all store requests in the AGU
might result in the store request order (𝑠2, 𝑠0, 𝑠1). In the CU,
we need to guarantee the same order of corresponding store
values (poisoned or not) on every possible control-flow path
through the loop. Unfortunately, the obvious approach that
worked for the trivial example in Figure 1c does not work



Compiler Support for Speculation in Decoupled Access/Execute Architectures CC ’25, March 1–2, 2025, Las Vegas, NV, USA

for (i = 1; i < N - 1; ++i)
  a = A[i];
  if (a > 0)
    if (a < MAX1)
      A[i + 1] = a + 1; // st0
    else
      A[i - 1] = a + 1; // st1
  else
    A[i] = a + 1;       // st2

ld a
if (a > 0)

if (a < MAX)

st0 st1

st2

latch

(a) Code and control-flow graph of a loop with three control-
dependent stores causing a loss-of-decoupling.

a=consume_ld_val
if (a > 0)

poison st2
if (a < MAX)

poison st1
send st0

poison st0
send st1

poison st0
poison st1
send st2

// Assume AGU st request order:
//     s2, s0, s1
for (i = 1; i < N - 1; ++i)
  a = consume_ld_val();
  if (a > 0)
    poison_st2();
    if (a < MAX1)
      poison_st1();
      send_st0(a + 1);
    else
      poison_st0();
      send_st1(a + 1);
  else
    poison_st0();
    poison_st1();
    send_st2(a + 1);

latch

(b) Depending on control flow, the order of store values can be:
(𝑠2, 𝑠1, 𝑠0), (𝑠2, 𝑠0, 𝑠1), (𝑠0, 𝑠1, 𝑠2), but only (𝑠2, 𝑠0, 𝑠1) is correct.

Figure 3. Poisoning speculated stores immediately when
they become unreachable results in an ordering mismatch
between AGU store requests from and CU store values.

here. If we poison values at points where the corresponding
speculation becomes unreachable, as illustrated in Figure 3b,
then we end up with three possible orderings of store values
depending on the CFG path in the CU, but only one of the
orderings is correct. This is why any previous implemen-
tations of speculative stores in DAE architectures has only
considered trivial triangle or diamond shaped CFGs [24], like
the one in Figure 1c. Generalized compiler support for store
speculation that guarantees the correct order of poisoning is
the key challenge that we solve in this paper.

3 Background
In this section, we describe the architectural support needed
to enable speculative DAE and some compiler preliminaries.

3.1 Architectural Support
Our speculation technique requires architectural support for
predicated stores and FIFOs. Store values are tagged with
a poison bit that, when set, causes the corresponding store
request to be dropped in the DU without committing a store.
We say that a store request gets killed (or poisoned) if its
corresponding store value has the poison bit set. This is a
lightweight form of speculation that does not require replays
in the CU and does not result in out-of-bounds stores, be-
cause mis-speculated stores are never committed. Speculative
loads can be supported by simply discarding the value of a
mis-speculated load.

Predicated stores are easy to support in hardware since
the underlying memory protocol usually already uses a valid
signal. For example, the commonly used AXI4 interface
[4] has a strobe signal to indicate which bytes are valid.
Architectural FIFOs (queues) are also commonly added in
works on CPU/GPU microarchitecture or can be relatively
cheaply implemented in software. For example, works on
DAE CPU/GPU prefetchers add architectural FIFOs and ex-
tend the ISA with instructions for producing load/store ad-
dresses and consuming/producing store values [3, 5, 17, 18,
24, 38, 47].

The prefetcher from [24] enables predicated stores with a
store_inv instruction, but the authors support only simple
triangle or diamond control flow patterns, calling for future
work on general speculation support. We discuss concrete ex-
amples of architectures that can benefit from our work in §7.
We evaluate our work on accelerators generated from HLS,
where we have complete control of the memory interfaces.

3.2 Compiler Preliminaries
We use an SSA-based compiler representation and associated
analyses [49]. In particular, we use the control-flow graph
and dominator tree to calculate control dependencies [40],
and we use the SSA def-use chain for data dependencies.

We use a canonical loop representation: loops have a sin-
gle header block and a single loop backedge going from the
loop latch to the loop header. Our transformation assumes re-
ducible control flow—CFG edges can be partitioned into two
disjoint sets, forward and back edges, such that the forward
edges form a directed acyclic graph (DAG). Irreducible con-
trol flow can be made reducible with node splitting [7, 44].
For completeness, we briefly describe how our compiler

implements a DAE architecture:

1. AGU: For each memory operation to be decoupled,
we change it to a send_ld_addr or a send_st_addr
function that sends the memory address to the DU.

2. CU:Dually, in the CUwe change each decoupled mem-
ory operation to a consume_val or produce_val func-
tion that receives or sends values to or from the DU.

3. Dead Code Elimination: We run a standard DCE
pass in the CU to remove the now unnecessary address
generation code. In the AGU, we delete all side effect
instructions that are not part of the address generation
def-use chains, and then also run a standard DCE pass.
We also use a control-flow simplification pass that
removes empty blocks potentially created by DCE.

The send_ld_addr, send_st_addr, consume_val, and
produce_val functions are implementation dependent. For
example, if we target CPU/GPU prefetchers, such as [17, 24],
then these would translate to instructions. For accelerators,
they would be translated to FIFO writes/reads.



CC ’25, March 1–2, 2025, Las Vegas, NV, USA Robert Szafarczyk, Syed Waqar Nabi, and Wim Vanderbauwhede

4 Loss-of-Decoupling Analysis
LoD events arise when the address generation for a given
memory access depends on a load that cannot be trivially
prefetched, causing the AGU, DU, and CU communication
to be synchronized. By non-trivially prefetched we mean
loads that have a RAW hazards, i.e., the DU needs to receive
all previous store addresses in program order to perform
memory disambiguation before executing the load.

Given a set of address-generating instructions𝐺 , and a set
of memory load instructions 𝐴 using addresses generated by
instructions in 𝐺 , there is a loss of decoupling if:

Definition 4.1 (LoD Data Dependency). There exists a
path in the def-use chain from 𝑎 ∈ 𝐴 to 𝑔 ∈ 𝐺 . While en-
countering a 𝜙-node on the def-use chain leading to 𝑔, we
also trace the def-use paths of the terminator instructions 𝑇
in the 𝜙-node incoming basic blocks to see if any terminator
instruction in 𝑇 depends on any 𝑎 ∈ 𝐴.

Definition 4.2 (LoD Control Dependency). There exists
an instruction 𝑔 ∈ 𝐺 that is control-dependent on a branch
instruction𝑏, and there is a path in the def-use chain from𝑎 ∈
𝐴 to 𝑏. We call the basic block that contains 𝑏 the LoD control
dependency source. Note that the LoD control dependency
source need not be the immediate control dependency of 𝑔,
and that 𝑔 might have multiple LoD control dependencies.

Depending on the hardware context, the definition of the𝐴
set can be expanded or narrowed. For example, if the AGU is
implemented in hardware with limited control flow support,
then 𝐴 could include all branch instructions. On the other
hand, given an address generating instruction, we could limit
𝐴 to only include loads from the same array for which the
given address is generated—this could be useful if we only
want to preserve decoupling for that array and do not care
about losing decoupling for other arrays. Our speculation
technique applies equally well to all these definitions.

An example of a LoD data dependency is the A[f(A[i])]
access. Our speculation approach does not recover decou-
pling for such cases, but fortunately such accesses are rare.
An example of a more common LoD data dependency is the
code pattern if (A[i]) A[i++] = 1. In this case, the def-use
chain leading to the definition of the store address contains
a 𝜙-node (i) whose value depends on loading from𝐴. Such a
pattern is sometimes found in algorithms that operate on dy-
namically growing data structures, e.g. queues or stacks. Our
speculation technique does not work on such cases either,
but this is not a large limitation, since performance oriented
codes typically do not use dynamically growing structures,
instead opting for implementations with bounded space re-
quirements that can be allocated statically [62].

An example of LoD due to a control dependency is shown
in Figure 1b. This case is much more common than a direct
data dependency and is the focus of this paper.

Algorithm 1 Control-flow hoisting of AGU requests
1: Input: 𝑠𝑟𝑐𝐵𝑙𝑜𝑐𝑘𝑠 list of blocks that are the source of a

LoD control dependency (defined in §4)
2: Output: 𝑆𝑝𝑒𝑐𝑅𝑒𝑞𝑀𝑎𝑝 { basic block: list of hoisted re-

quests to this block }
3:
4: for 𝑠𝑟𝑐𝐵𝐵 ∈ 𝑠𝑟𝑐𝐵𝑙𝑜𝑐𝑘𝑠 do
5: ⊲ traverse the DAG from 𝑠𝑟𝑐𝐵𝐵 to the loop latch
6: for 𝑓 𝑟𝑜𝑚𝐵𝐵 ∈ 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑃𝑜𝑠𝑡𝑂𝑟𝑑𝑒𝑟 (𝑠𝑟𝑐𝐵𝐵) do
7: if 𝑓 𝑟𝑜𝑚𝐵𝐵 contains memory requests then
8: hoist 𝑓 𝑟𝑜𝑚𝐵𝐵 requests to the end of 𝑠𝑟𝑐𝐵𝐵
9: add requests to 𝑆𝑝𝑒𝑐𝑅𝑒𝑞𝑀𝑎𝑝 [𝑠𝑟𝑐𝐵𝐵]

5 Compiler Support for Speculation
We now describe our dual transformations that enable spec-
ulation in the AGU and poison mis-speculations in the CU.

5.1 Speculating Memory Requests
Algorithm 1 describes our approach to introducing specu-
lation in the AGU. Given a LoD control dependency source
block 𝑠𝑟𝑐𝐵𝐵 we hoist all memory requests that are control de-
pendent on 𝑠𝑟𝑐𝐵𝐵 to the end of 𝑠𝑟𝑐𝐵𝐵. There can be multiple
blocks with memory requests that have a LoD control depen-
dency on 𝑠𝑟𝑐𝐵𝐵, which poses the question in which order
should they be hoisted to 𝑠𝑟𝑐𝐵𝐵. We use reverse post-order
in Algorithm 1.
Assuming reducible control flow, the CFG region from

𝑠𝑟𝑐𝐵𝐵 to the loop latch is a DAG. The reverse post-order of
a DAG is its topological order. Topological ordering gives us
the useful property that given two distinct basic blocks 𝐴
and 𝐵 in a given loop, if 𝐴 ≺ 𝐵 in any path through the loop
then 𝐴 ≺ 𝐵 in the topological ordering. Note that there can
be multiple topological orderings for a DAG, but it does not
matter which one is chosen in our algorithm.
Algorithm 1 traverses the CFG region from 𝑠𝑟𝑐𝐵𝐵 to the

end of its loop (or to the end of the function if 𝑠𝑟𝑐𝐵𝐵 is
not in a loop). During the traversal, we ignore CFG edges
leading to loop headers—we do not enter loops other than
the innermost loop containing 𝑠𝑟𝑐𝐵𝐵.

5.1.1 Example of Hoisting. Consider the CFG from Fig-
ure 4a. There are three LoD control dependency source
blocks (2, 3, 5) and five blocks with memory requests (blocks
2, 4, 5, 6, 7with requests 𝑎, 𝑐, 𝑏, 𝑑, 𝑒 , respectively). Assume that
each block holds a single memory request—multiple memory
requests within the same block are treated in the same way
by our algorithms. Figure 4c shows the topological order of
the loop (block 1 is omitted for brevity). Algorithm 1 will
hoist 𝑏, 𝑒 to the end of block 2, and 𝑐, 𝑑, 𝑒 to the end of block
3—the result is presented in Figure 4b. Note that the requests
𝑏 and 𝑒 were hoisted to both block 2 and 3, because they are
reachable from both blocks. Nothing is hoisted to block 1
since it is not a LoD control dependency source.



Compiler Support for Speculation in Decoupled Access/Execute Architectures CC ’25, March 1–2, 2025, Las Vegas, NV, USA

 

2 3 4 5 6 7 L

2 Le

a c b d e

Topological order of blocks 
(stores within block at top):

Paths from block 2:

2 5 L
2 5 7 L

b
e

3 L

Paths from block 3:

3 5 L
3 5 L

54
c
4

7
7
e

3 5 Lc e
3 Lc 6

d
d

d
d

eb

H

a

b

dc

e

1

2 3

4
5

6

7

H

cbdeabe

1

2 3

4
5

6

7

a

b

cbdec

e

1

2 3

4
5

6

7

e

be
c

d

8

10

11

9

(a) Original CFG with memory
operations a, b, c, d, e.

(b) AGU CFG with speculative
requests (Algorithm 1).

(c) Insertion of poison stores on
CU CFG paths (Algorithm 2).

(d) Final CU CFG with poison
calls and blocks (Algorithm 3).

Legend

Loss-of-
decoupling

control
dependency
source basic

block

x
Basic block
nr 2 with a
memory

operation x

2

x

Basic block
poisoning

store x

    LL L

Figure 4. An example of introducing speculative memory requests in the AGU (§5.1); and poisoned stores in the CU (§5.2).
Block 6 in subfigure (d) kills stores c, b, then uses the allocation for store d, and then kills store e.

5.1.2 Nested LoD Control Dependencies. Block 5 in
Figure 4b does not contain any speculative requests because
it itself has a LoD control dependency on block 2 and 3.
Algorithm 1 considers only LoD control dependency source
blocks that are not themselves the destination of another LoD
control dependency. Given a chain of nested LoD control
dependencies, we only consider the chain head. For example,
the Figure 4a CFG has two LoD control dependency chains:
2, 5 and 3, 5—Algorithm 1 considers only blocks 2 and 3.

5.1.3 Why Topological Order in Algorithm 1? Topo-
logical order is needed to make it possible to match the order
of speculative requests made in the AGU with the order of
values that will arrive from the CU on all its possible CFG
paths. Consider, for example, the requests 𝑏 and 𝑐 in Fig-
ure 4a. We first want to hoist 𝑐 to block 3 before hoisting 𝑏,
because there exists a CFG path where 𝑐 comes before 𝑏, but
not vice versa. If𝑏 were hoisted before 𝑐 , then the speculative
requests order would be 𝑏 ≺ 𝑐 , which would be impossible
to match with values in the CU on the CFG path 3, 5, 7.

5.2 Poisoning Mis-speculated Stores
Our strategy for poisoning misspeculations in the CU is to
first map a poison call to a CFG edge, and then to map that
edge to a poison store call contained in an existing or newly
created basic block.
Algorithm 2 describes the first step. Given block 𝑠𝑝𝑒𝑐𝐵𝐵

that contains speculative memory requests 𝑠𝑝𝑒𝑐𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠 , we
consider each path in the DAG from the 𝑠𝑝𝑒𝑐𝐵𝐵 to the loop
latch (or function exit) in the CU. We call the block where
a 𝑟 ∈ 𝑠𝑝𝑒𝑐𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠 becomes true the 𝑡𝑟𝑢𝑒𝐵𝐵 (for example,
the 𝑡𝑟𝑢𝑒𝐵𝐵 for request 𝑏 in Figure 4a is block 5). For each
CFG path, we use the 𝑡𝑟𝑢𝑒𝐵𝑙𝑜𝑐𝑘𝑠 list to keep track of which

Algorithm 2Mapping Poison Stores to CFG Edges in CU
1: Input: 𝑆𝑝𝑒𝑐𝑅𝑒𝑞𝑀𝑎𝑝 { basic block: list of requests hoisted

to this block in Algorithm 1 }
2:
3: for 𝑠𝑝𝑒𝑐𝐵𝐵, 𝑠𝑝𝑒𝑐𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠 ∈ 𝑆𝑝𝑒𝑐𝑅𝑒𝑞𝑀𝑎𝑝 do
4: for 𝑝𝑎𝑡ℎ ∈ 𝑎𝑙𝑙𝑃𝑎𝑡ℎ𝑠𝑇𝑜𝐿𝑜𝑜𝑝𝐿𝑎𝑡𝑐ℎ(𝑠𝑝𝑒𝑐𝐵𝐵) do
5: 𝑡𝑟𝑢𝑒𝐵𝑙𝑜𝑐𝑘𝑠 ← ∅ ⊲ set keeps insertion order
6: for 𝑟 ∈ 𝑠𝑝𝑒𝑐𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠 do
7: 𝑡𝑟𝑢𝑒𝐵𝐵← block where 𝑟 is true
8: 𝑡𝑟𝑢𝑒𝐵𝑙𝑜𝑐𝑘𝑠.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑡𝑟𝑢𝑒𝐵𝐵)
9: for 𝑒𝑑𝑔𝑒 ∈ 𝑝𝑎𝑡ℎ do
10: for 𝑡𝑟𝑢𝑒𝐵𝐵 ∈ 𝑡𝑟𝑢𝑒𝐵𝑙𝑜𝑐𝑘𝑠 do
11: if 𝑒𝑑𝑔𝑒𝑑𝑠𝑡 = 𝑡𝑟𝑢𝑒𝐵𝐵 then
12: 𝑡𝑟𝑢𝑒𝐵𝑙𝑜𝑐𝑘𝑠.𝑟𝑒𝑚𝑜𝑣𝑒 (𝑡𝑟𝑢𝑒𝐵𝐵)
13: break ⊲ to the next edge
14: if 𝑡𝑟𝑢𝑒𝐵𝐵 not reachable from 𝑒𝑑𝑔𝑒𝑑𝑠𝑡 then
15: ⊲ reachability ignores loop backedges
16: poison 𝑡𝑟𝑢𝑒𝐵𝐵 requests on 𝑒𝑑𝑔𝑒 ⊲ Alg. 3
17: 𝑡𝑟𝑢𝑒𝐵𝑙𝑜𝑐𝑘𝑠.𝑟𝑒𝑚𝑜𝑣𝑒 (𝑡𝑟𝑢𝑒𝐵𝐵)

requests were already used or poisoned on the path—the list
contains the 𝑡𝑟𝑢𝑒𝐵𝐵 for each 𝑟 ∈ 𝑠𝑝𝑒𝑐𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠 .
Given an edge in the traversal, the edge is skipped if the

next 𝑡𝑟𝑢𝑒𝐵𝐵 ∈ 𝑡𝑟𝑢𝑒𝐵𝑙𝑜𝑐𝑘𝑠 is still reachable from 𝑒𝑑𝑔𝑒𝑑𝑠𝑡 .
This guarantees that the order of speculative requests in the
AGUmatches the order of values in the CU, i.e., a speculative
request for a given 𝑡𝑟𝑢𝑒𝐵𝐵 block is not poisoned immedi-
ately when 𝑡𝑟𝑢𝑒𝐵𝐵 becomes unreachable if there is an earlier
speculative request that can still be used.

5.2.1 Example ofMappingPoison Stores toCFGEdges.
Figure 4c shows which CFG edges are poisoned given the
original CFG in Figure 4a and the AGU CFG in Figure 4b. For



CC ’25, March 1–2, 2025, Las Vegas, NV, USA Robert Szafarczyk, Syed Waqar Nabi, and Wim Vanderbauwhede

Algorithm 3 Poisoning Stores on Edges in CU
1: Input: store request 𝑟 ; CFG 𝑒𝑑𝑔𝑒 ; block 𝑠𝑝𝑒𝑐𝐵𝐵 where 𝑟

was speculated; block 𝑡𝑟𝑢𝑒𝐵𝐵 where 𝑟 is true
2:
3: 𝑝𝑜𝑖𝑠𝑜𝑛𝐵𝑙𝑜𝑐𝑘𝑅𝑒𝑢𝑠𝑒 ← ∅ ⊲ preserve set across calls
4: if 𝑒𝑑𝑔𝑒𝑑𝑠𝑡 is reachable from 𝑡𝑟𝑢𝑒𝐵𝐵 then
5: 𝑝𝑜𝑖𝑠𝑜𝑛𝐵𝐵 ← create new block on 𝑒𝑑𝑔𝑒 or
6: get from 𝑝𝑜𝑖𝑠𝑜𝑛𝐵𝑙𝑜𝑐𝑘𝑅𝑒𝑢𝑠𝑒 if exists
7: append 𝑝𝑜𝑖𝑠𝑜𝑛(𝑟 ) to the end of 𝑝𝑜𝑖𝑠𝑜𝑛𝐵𝐵
8: 𝑝𝑜𝑖𝑠𝑜𝑛𝐵𝑙𝑜𝑐𝑘𝑅𝑒𝑢𝑠𝑒.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑝𝑜𝑖𝑠𝑜𝑛𝐵𝐵)
9: else if 𝑠𝑝𝑒𝑐𝐵𝐵 does not dominate 𝑒𝑑𝑔𝑒𝑑𝑠𝑡 then
10: 𝑝𝑜𝑖𝑠𝑜𝑛𝐵𝐵 ← create new block on 𝑒𝑑𝑔𝑒

11: append 𝑝𝑜𝑖𝑠𝑜𝑛(𝑟 ) to the end of 𝑝𝑜𝑖𝑠𝑜𝑛𝐵𝐵
12: ⊲ create recursively on 𝑠𝑝𝑒𝑐𝐵𝐵 → 𝑒𝑑𝑔𝑒𝑠𝑟𝑐 paths
13: create 𝜙 (1, 𝑠𝑝𝑒𝑐𝐵𝐵) value in 𝑒𝑑𝑔𝑒𝑠𝑟𝑐
14: branch from 𝑒𝑑𝑔𝑒𝑠𝑟𝑐 to 𝑝𝑜𝑖𝑠𝑜𝑛𝐵𝐵 on 𝜙 = 1
15: else
16: append 𝑝𝑜𝑖𝑠𝑜𝑛(𝑟 ) to the start of 𝑒𝑑𝑔𝑒𝑑𝑠𝑡

example, the path 3 → 5 → 𝐿 will have: 𝑝𝑜𝑖𝑠𝑜𝑛(𝑐) on the
3 → 5 edge; and 𝑝𝑜𝑖𝑠𝑜𝑛(𝑑), 𝑝𝑜𝑖𝑠𝑜𝑛(𝑒) on the 5 → 𝐿 edge
(4th path from block 3 in Figure 4c).

5.2.2 Mapping Poisoned Edges to Basic Blocks. Algo-
rithm 3 shows how poisoned CFG edges are mapped to actual
poison calls placed in a concrete basic block. Given a poi-
soned request 𝑟 on 𝑒𝑑𝑔𝑒 (from 𝑒𝑑𝑔𝑒𝑠𝑟𝑐 block to 𝑒𝑑𝑔𝑒𝑑𝑠𝑡 block),
the 𝑠𝑝𝑒𝑐𝐵𝐵 block where 𝑟 was speculated in the AGU, and
𝑡𝑟𝑢𝑒𝐵𝐵 where r becomes true there are three cases:

1. There exists a path from 𝑡𝑟𝑢𝑒𝐵𝐵 to 𝑒𝑑𝑔𝑒𝑑𝑠𝑡 . In this
case, we cannot insert 𝑝𝑜𝑖𝑠𝑜𝑛(𝑟 ) in 𝑒𝑑𝑔𝑒𝑑𝑠𝑡 , because
we would end up with a CFG path where the store is
both true and poisoned. To avoid this, we create a new
𝑝𝑜𝑖𝑠𝑜𝑛𝐵𝐵 block on 𝑒𝑑𝑔𝑒 and append 𝑝𝑜𝑖𝑠𝑜𝑛(𝑟 ) to it.

2. There exists a path from the loop header to 𝑒𝑑𝑔𝑒𝑑𝑠𝑡
that does not contain 𝑠𝑝𝑒𝑐𝐵𝐵. In this case, we cannot
insert 𝑝𝑜𝑖𝑠𝑜𝑛(𝑟 ) in 𝑒𝑑𝑔𝑒𝑑𝑠𝑡 , because we would end up
with a CFG path where 𝑟 was not speculated in the
AGU, but was poisoned in the CU. To avoid this, we
create a new block 𝑝𝑜𝑖𝑠𝑜𝑛𝐵𝐵 on the edge and append
𝑝𝑜𝑖𝑠𝑜𝑛(𝑟 ) to it. We also add steering instructions to the
path from 𝑠𝑝𝑒𝑐𝐵𝐵 to 𝑝𝑜𝑖𝑠𝑜𝑛𝐵𝐵 that will branch from
𝑒𝑑𝑔𝑒𝑠𝑟𝑐 to 𝑝𝑜𝑖𝑠𝑜𝑛𝐵𝐵 only if 𝑠𝑝𝑒𝑐𝐵𝐵 was encountered
on the current CFG path.

3. Otherwise, 𝑝𝑜𝑖𝑠𝑜𝑛(𝑟 ) can safely be prepended to the
start of 𝑒𝑑𝑔𝑒𝑑𝑠𝑡 .

Algorithm 3 is executed only once per (𝑒𝑑𝑔𝑒 , 𝑟 ) tuple—a
given request is poisoned at most once on a given edge. Also,
poison blocks created in case 1 in Algorithm 3 can be reused
to poison other requests.

b

e

L

d d

ee

b

L

d d

ee

5

10 12

7
11 13

merge 10 & 12

5

10 12

7
11

b

L

d

ee

5

10

7
11

merge 11 & 13

Figure 5. Basic blocks with the same list of poison stores
and the same immediate successor can be merged in the CU.

5.2.3 Example of Mapping Poison Edges to Blocks.
Consider how the poisoned edges in Figure 4c are mapped
to basic blocks in Figure 4d.
Case 1: Store 𝑐 is poisoned on the 3 → 5 edge. Since

there is a path from the true block of 𝑐 (block 4) to the edge
destination block (block 5), we create a new block on the
3→ 5 edge and append 𝑝𝑜𝑖𝑠𝑜𝑛(𝑐) to it.
Case 2: Store 𝑑 is poisoned on both the 5→ 7 and 5→ 𝐿

edges. The 𝑠𝑝𝑒𝑐𝐵𝐵 for 𝑑 is block 3. Since there exists the path
𝐻 → 1 → 2 → 5 that does not contain block 3, we create
a new block on the 5→ 7 edge with the 𝑝𝑜𝑖𝑠𝑜𝑛(𝑑) call. We
add steering instructions to the 3→ 5 and 3→ 4→ 5 paths
that will cause block 5 to branch to the new poison block
on the 5→ 7 edge only if block 5 was reached from a path
containing block 3.
Case 3: Store 𝑐 is also poisoned on the 3 → 6 edge, but

here it is safe to prepend 𝑝𝑜𝑖𝑠𝑜𝑛(𝑐) to the start of block 6.

5.3 Merging Poison Blocks
Case 1 and 2 of Algorithm 3 might create multiple poison
blocks for the same store on different CFG edges. It is possible
to merge two poison blocks into one if they contain the
same list of poison stores and if they have the same list of
immediate successors. When merging, we keep instructions
from just one block. We apply such merging iteratively after
Algorithms 2 and 3. For example, Figure 5 contains a CFG sub-
region of our running example from Figure 4. Algorithm 3
inserted poison blocks 10, 11, 12, 13 to poison stores 𝑑 and 𝑒 .
Block pairs (11, 13) and (10, 12) can be merged.

5.4 Speculative Load Consumption
Speculative loads are relatively easy to support. To match
the order of load_consume calls in the CU with the order
of speculative send_load_addr calls in the AGU we can
hoist the load_consume calls to the same block where the
corresponding send_load_addr were hoisted in the AGU.
Then, the CU can either use the load value or discard it.
After hoisting, we need to update all 𝜙 instructions that use
the load value, since the basic block containing the loaded
value will have changed. Alternatively, we can transform 𝜙

instructions using the load value into select instructions.



Compiler Support for Speculation in Decoupled Access/Execute Architectures CC ’25, March 1–2, 2025, Las Vegas, NV, USA

6 Safety and Liveness
We prove that our transformations preserve the sequential
consistency of the original program and that they do not
introduce deadlock. Deadlock freedom is a corollary of se-
quential consistency, so we focus only on the latter. We
show that on every CFG path the order of speculative store
requests in the AGU matches the order of store values in the
CU, and that the non-poisoned store value sequence in the
CU matches the store sequence of the original code.

In the following discussion, we assume blocks with a sin-
gle store; the proof trivially extends to blocks with multi-
ple stores since all speculative stores in the same block are
treated the same. We also assume that all stores are specula-
tive, since the relative order between non-speculative and
speculative stores is guaranteed by definition: given a a non-
speculative store 𝑠1 and a speculative store 𝑠2, Algorithm 1
will not change the relative program order of 𝑠1 and 𝑠2, i.e., if
𝑠1 ≺ 𝑠2 in the original program order, then it is not possible
to hoist 𝑠2 such that 𝑠2 ≺ 𝑠1. This follows from the con-
trol dependency definition (§4)—𝑠2 hoisting stops at its LoD
control dependency source 𝑠𝑟𝑐𝐵𝐵, which must come after
the block containing 𝑠1 in topological order. If 𝑠𝑟𝑐𝐵𝐵 would
come after 𝑠1 in topological order, then the block containing
𝑠1 would also have a LoD control dependency on 𝑠𝑟𝑐𝐵𝐵 and
would have been hoisted, which is a contradiction since we
assumed that 𝑠1 was non-speculative. A similar argument
can be made if 𝑠2 ≺ 𝑠1 in the original program.

Lemma 6.1 (Sequential Consistency). Given an ordered list
of 𝑛 speculative store requests 𝐿𝑎 = {𝑎0, 𝑎1, ..., 𝑎𝑛−1} made
in the AGU loop CFG on some fixed iteration 𝑘 , Algorithms
2 and 3 transform the CU CFG such that every possible
path through its loop CFG on iteration 𝑘 produces an or-
dered list of𝑛 tagged store values 𝐿𝑣 = {(𝑣0, 𝑝0), (𝑣1, 𝑝1), ...,
(𝑣𝑛−1, 𝑝𝑛−1)}, such that each (𝑎𝑖 , 𝑣𝑖 , 𝑝𝑖 ), 0 ≤ 𝑖 < 𝑛 triple cor-
responds to a 𝐴[𝑎𝑖 ] ← 𝑣𝑖 store in the original program CFG,
and 𝑝𝑖 = 1 (poison bit) if that store is not executed on the
path through the original loop CFG on iteration 𝑘 .

Proof. We use a proof by induction on the transformed CFG.
Base case: 𝐿𝑎 = ∅ (no speculated requests in the AGU).

Algorithm 2 does not change the CU CFG. Thus, the order
of store addresses in the AGU and store values in the CU
trivially matches, 𝐿𝑎 = 𝐿𝑣 = ∅.
Inductive hypothesis: assume Lemma 6.1 holds at basic

block 𝐵𝑖 in the current CFG path. All store requests 𝑎 𝑗 ∈
𝐿𝑎 contained in blocks reached before 𝐵𝑖 in the path were
matched with the correct store value call (𝑣 𝑗 , 𝑝 𝑗 ) ∈ 𝐿𝑣 , such
that 𝑝 𝑗 = 1 if 𝐴[𝑎 𝑗 ] ← 𝑣 𝑗 was not executed on the path in
the original loop CFG.
Inductive step: The next store address in the AGU 𝐿𝑎 se-

quence is 𝑎 𝑗+1 ∈ 𝐿𝑎 . The next store value in the CU CFG
path should be (𝑣 𝑗+1, 𝑝 𝑗+1) ∈ 𝐿𝑣 , where 𝑝 𝑗+1 = 1 iff the
store 𝐴[𝑎 𝑗+1] ← 𝑣 𝑗+1 is not reached on the current CFG

path in the original program. Algorithm 2 considers the
𝑒𝑑𝑔𝑒𝑠𝑟𝑐 → 𝑒𝑑𝑔𝑒𝑑𝑠𝑡 next. There are three cases:

1. 𝑒𝑑𝑔𝑒𝑑𝑠𝑡 = 𝑡𝑟𝑢𝑒𝐵𝐵, where 𝑡𝑟𝑢𝑒𝐵𝐵 is the block contain-
ing the store 𝐴[𝑎 𝑗+1] ← 𝑣 𝑗+1 in the original program
CFG. In this case, Algorithm 2 will not poison this
store on this path through the CU CFG, i.e., the next
item in the 𝐿𝑣 sequence will be the correct (𝑣 𝑗 , 0).

2. 𝑒𝑑𝑔𝑒𝑑𝑠𝑡 ≠ 𝑡𝑟𝑢𝑒𝐵𝐵 and 𝑡𝑟𝑢𝑒𝐵𝐵 is not reachable from
𝑒𝑑𝑔𝑒𝑑𝑠𝑡 , in which case Algorithm 2 will insert a poison
store on this edge. Algorithm 3 will map this poison
store to a basic block, with the effect that taking the
𝑒𝑑𝑔𝑒 will result in the poison call being executed and
control transferring to 𝑒𝑑𝑔𝑒𝑑𝑠𝑡 . The next item in the
𝐿𝑣 sequence will be the correct (𝑣 𝑗 , 1).

3. 𝑒𝑑𝑔𝑒𝑑𝑠𝑡 ≠ 𝑡𝑟𝑢𝑒𝐵𝐵 and 𝑡𝑟𝑢𝑒𝐵𝐵 is reachable from 𝐵𝑙 , in
which case Algorithm 2 will traverse the path until
Case 1 or 2 is matched.

Since Lemma 6.1 holds for the base case, for basic blocks
on the path up to 𝐵𝑖 , and for some successor block of 𝐵𝑖 , it
must hold at any block on the path. If it holds at any block
on the path, it holds for the whole path. Since a given store
request 𝑟 is poisoned at most once on a given CFG edge
and since, by definition of Algorithm 2, any given path will
contain at most one edge where 𝑟 is poisoned, we conclude
that Lemma 6.1 holds for all paths. □

7 Applications
In this section, we highlight three applications for our work:
DAE-based prefetchers in CPUs/GPUs, CGRAs, and special-
ized accelerators generated from HLS. In the next section,
we choose HLS as an evaluation vehicle due to its simplicity
compared to CPU/GPU prefetchers where the evaluation
results can easily be polluted by other architectural factors
like cache behavior, branch prediction, etc. However, we em-
phasize that our speculation support in DAE does not rely
on any HLS-specific features and can be applied wherever
speculation is combined with the DAE technique.

7.1 CPU/GPU Prefetchers
Most existing works on CPU/GPU prefetchers follow the
DAE principle and rely on the compiler to decoupled address
generation from compute [3, 5, 17, 18, 24, 38, 47]. All of these
works suffer from the control-dependency loss of decoupling
(LoD) problem (§4). The work in [24] discusses adding spec-
ulation and predicated stores to the CPU microarchitecture
to mitigate LoD, but their compiler only supports simple
diamond and triangle control flow shapes. In this paper, we
have demonstrated generalized compiler support for specu-
lation in DAE, making these works viable for general control
flow and thus applicable to a broader set of codes.

7.1.1 Example. The CPU prefetcher proposed in [24] (on
which most of the other work is based) separates address gen-
eration from compute and extends the ISA with store_addr,



CC ’25, March 1–2, 2025, Las Vegas, NV, USA Robert Szafarczyk, Syed Waqar Nabi, and Wim Vanderbauwhede

load_produce, store_val, load_consume, and store_inv
instructions that can be directly targeted by our compiler.

7.2 Coarse Grain Reconfigurable Architectures
A CGRA consists of an array of PEs, each with small memo-
ries, connected by a network. A CGRA compiler is typically
co-designed with the hardware, as the PEs are typically stat-
ically scheduled. The job of the compiler is to map the Con-
trol/Data Flow Graph (CDFG) to the PEs, and many works
follow the DAE technique to tackle the memory wall prob-
lem [20, 27, 37, 39, 43, 45, 46, 61]. Our work can help mitigate
LoD events when mapping to CGRAs.

7.2.1 Example. The CGRA proposed in [39] is an example
of a modern streaming dataflow CGRA. All communication
in the CGRA is FIFO-based, and address generation is ex-
plicitly decoupled at compile time into AGUs. The compiler
generates commands to produce address streams, and to
consume or produce values. Control flow is handled with
predication and there is a SD_Clean_Port command to throw
away a value from an output port that can be used to imple-
ment predicated stores.

7.3 High-Level Synthesis
In HLS, the CDFG of an algorithm is implemented directly
in hardware following a spatial execution model with the
freedom to customize the memory system. This makes de-
coupling easier in HLS compared to the temporal CPU/GPU
execution model. HLS-generated accelerators can directly
benefit from our work today without any changes, and it is
in this domain that we evaluate our implementation in the
next section.
Although existing HLS compilers are successful in build-

ing non-trivial accelerators for regular code (e.g., [48]), their
static scheduling techniques are sub-optimal for irregular
codes (for the same reason why traditional VLIW compilers
were sub-optimal for irregular codes). Many research works
in academia and industry have exploited DAE in HLS to
improve the efficiency of HLS-generated accelerators for ir-
regular codes [11–13, 15, 16, 21, 53–55]. By adding compiler
speculation support, DAE in HLS can be used on a broader
set of codes, which we demonstrate in the next section.

8 Evaluation
In this section, we answer the following questions:
• What is the performance benefit of using a DAE ar-
chitecture (enabled by our speculation approach) to
accelerate codes with LoD control dependencies?
• What is the cost of mis-speculation in our approach?
• What is the impact on code size (accelerator area usage)
of our speculation approach?
• What is the scalability for nested control flow, which
increases the number of poison stores and blocks?

We make our work and evaluation publicly available [52].

bfs bc sssp hist thr mm fw sort spmv hmean
0

1

2

3

4

N
or

m
al

iz
ed

 s
pe

ed
up

STA DAE SPEC_DAE ORACLE

Figure 6. Performance of DAE, SPEC and ORACLE normalized
to STA. SPEC achieves an average 1.9× (up to 3×) speedup.

8.1 Methodology
We generate algorithm-specific accelerators using HLS tar-
geting an Intel Arria 10 FPGA. The C codes are taken directly
from benchmark suites without adding any HLS-specific an-
notations (excluding dynamic structures, like queues, that
were replaced with HLS-specific libraries).

We use the LLVM-based Intel SYCL HLS compiler [29]
and apply our standard DAE transformation (§3.2) and our
proposed speculation transformation (§5) as LLVM passes.
The codes use deterministic dual-ported on-chip SRAM ca-
pable of 1 read and 1 write per cycle. To enable out-of-order
loads, we use a load-store queue (LSQ) designed for HLS
(load/store queue sizes of 4/32), which is commonly found
on accelerators for irregular codes [1, 24, 31, 53].
We report cycle counts from ModelSim simulations. We

do not report circuit frequency since our approach does not
affect the critical path (see [52] for such details). Area usage
is obtained after place and route using Quartus 19.2.

8.1.1 Baselines. For each benchmark, we synthesize the
following architectures which represent current state-of-the-
art approaches to HLS :
• STA: the default, industry-grade approach using static
scheduling [29]. Loads that cannot be disambiguated
at compile time execute in order.
• DAE: a DAE architecture without speculation. OoO
loads are enabled by an LSQ. This is the state-of-the-
art approach to irregular codes in academia [53], but
it suffers from control-dependency LoDs.
• SPEC: the same as DAE, but with our speculation tech-
nique which mitigates control-dependency LoDs.
• ORACLE: the same as DAE, but all LoD control depen-
dencies are removed manually from the input code.
The ORACLE results are wrong, but give a bound on the
performance of SPEC and show its area overhead.

8.1.2 Benchmarks. DAE architectures optimize the la-
tency between memory and compute and are most beneficial
for memory-bound codes [24], especially codes with an irreg-
ular memory access pattern that prevents static prefetching
[18]. We evaluate nine such benchmarks from the graph
and data analytics domain, using the GAP graph benchmark



Compiler Support for Speculation in Decoupled Access/Execute Architectures CC ’25, March 1–2, 2025, Las Vegas, NV, USA

Table 1. Absolute performance and area usage of STA [29], DAE [53], SPEC, and ORACLE accelerators. (*bc uses two LSQs).

Kernel Poison Mis-spec. Cycles Area (ALMs [28])
Blocks Calls Rate STA DAE SPEC ORACLE STA DAE SPEC ORACLE

bfs 1 1 95% 37,243 398,616 27,561 21,569 7,361 7,525 13,404 13,706
bc 2 2 95%, 82% * 109,061 406,178 51,109 42,942 9,709 10,859 16,582 16,558
sssp 1 1 95% 108,995 391,426 51,227 48,208 10,565 11,668 17,426 17,395
hist 1 1 2% 2,061 11,100 1,033 1,031 2,391 2,807 3,117 3,137
thr 1 3 97% 2,131 13,147 1,052 1,034 5,662 6,144 6,278 6,622
mm 1 2 31% 12,164 25,125 4,069 4,044 5,076 4,986 7,813 7,528
fw 1 1 85% 6,821 16,485 3,433 3,238 3,407 4,210 4,008 4,007
sort 1 2 49% 2,358 11,109 1,748 1,746 2,814 4,361 5,260 5,269
spmv 1 1 32% 13,319 18,693 8,028 7,984 3,895 5,085 4,416 4,336

Harmonic Mean: 1 3.2 0.51 0.48 1 1.16 1.42 1.36

suite [8] and an HLS benchmark suite [14] of irregular pro-
grams. We select only codes that can benefit from our SPEC
approach, i.e., codes with LoD control dependencies:

• bfs: breadth-first traversal through a graph.
• bc: betweenness centrality of a single node in a graph.
• sssp: single shortest path from a single node to all
other nodes in a graph using Dijkstra’s algorithm.
• hist: histogram, similar to Figure 1b (size 1000).
• thr: zeroes RGB pixels above threshold (size 1000).
• mm: maximal matching in a bipartite graph (2000 edges).
• fw: Floyd-Warshall distance calculation of all node-to-
node pairs in a dense graph (10×10 distance matrix).
• sort: using bitonic mergesort (size 64).
• spvm: sparse vector matrix multiply (20×20 matrix).

For the graph codes (bfs, bc, sssp) we use a real-world graph
email-Eu-core with 1005 nodes and 25,571 edges.

8.2 Performance
Figure 6 reports normalized speedups of each technique over
STA. Our SPEC approach gives on average a 1.9× (and up
to 3×) speedup over STA. This is within 5% of the ORACLE
performance. In contrast, DAE without speculation sees a
dramatic performance degradation over STA, because the
AGU, DU, CU communication is sequentialized.

8.2.1 Mis-speculation Cost. The SPEC and ORACLE per-
formance gap is highest on the bfs and bc codes, because of
its deep pipeline between the load and store that form a RAW
hazard. The deep pipeline means that more store allocations
need to be held by the LSQ to guarantee perfect pipelining
[34]. This, together with a high mis-speculation rate in these
benchmarks (Table 1), can cause the LSQ to fill with store
addresses that are mis-speculated, potentially stalling later
loads that have to wait for future store addresses to arrive.
This problem can be solved by increasing the store queue size
in the LSQ. The increased number of requests and the need
for more buffering is one of the limitations of our approach.

Codes with a shallower pipeline that do not need large LSQ
sizes have no mis-speculation penalty.
To prove this, we choose three benchmarks where we

can instrument the input data so that we can vary the mis-
speculation rate. Table 2 shows how the mis-speculation
cost changes as the mis-speculation rate increases. As can
be seen, there is no correlation between the mis-speculation
rate and cost, with the slight variability in clock cycle counts
attributable to the subtle difference in the number of true
RAW hazards due to the varying data distribution.

Table 2. SPEC cycle counts as mis-speculation rate changes.

Kernel Mis-speculation rate
𝜎0% 20% 40% 60% 80% 100%

hist 1044 1013 1029 1029 1012 1051 16
thr 1082 1109 1047 1073 1058 1071 21
mm 4107 4096 4074 4063 4106 4081 18

8.3 Code Size
Our speculation approach can increase the number of blocks
in the CU, especially for codes with deeply nested control
flow. In HLS, an increased number of blocks can result in a
higher area usage due to larger scheduler complexity [50].
Table 1 shows the absolute area usage of all accelerators.

We observe virtually no area overhead of SPEC over ORACLE
on the evaluated benchmarks. This is because most of the
codes have at most two control-flow nesting levels where
new poison blocks are inserted, and sometimes it is possible
to reduce the number of blocks using our merging technique
(e.g., two poison blocks in mm merged into one).

8.3.1 Impact of Nested Control Flow on Area Usage.
To give a more meaningful measure of how nested control
flow impacts the area overhead of our SPEC approach, we
create a synthetic benchmark template where we can tune
the number of poison blocks generated by SPEC:



CC ’25, March 1–2, 2025, Las Vegas, NV, USA Robert Szafarczyk, Syed Waqar Nabi, and Wim Vanderbauwhede

(1, 1) (2, 3) (3, 6) (4, 10) (5, 15) (6, 21) (7, 28) (8, 36)
Number of poison (blocks, calls)

0

5

10

15

20

25

%
 O

ve
rh

ea
d

AGU Area Overhead
CU Area Overhead
Performance Overhead

Figure 7. Change in area and performance overhead of SPEC
over ORACLE as the number of poison blocks and calls grows.

if 𝑥 > 0 then
𝑠𝑡𝑜𝑟𝑒1
if 𝑥 > 1 then

𝑠𝑡𝑜𝑟𝑒2
if 𝑥 > 2 then ...

Each nesting level in this template will result in one poison
block in the SPEC architecture. With 𝑛 stores, and assuming
one store per nesting level, there will be 𝑛 poison blocks and∑𝑛

𝑖=1 𝑖 =
𝑛×(𝑛+1)

2 poison calls.
Figure 7 shows how the area and performance overhead of

SPEC over ORACLE changes as more poison blocks are needed.
The performance overhead is close to 0% and does not change
with more poison blocks. The area overhead of the AGU unit
is similarly close to 0%, because SPEC hoists stores out of
the if -conditions, causing the blocks to be deleted. The area
overhead of the CU unit grows by a few percent (< 5%)
with each added poison block, but even for the pathological
case of eight nested if -conditions the overhead is below 25%.
In real codes, with more compute and lower control-flow
nesting, the area overhead of SPEC should be minimal.

9 Related Work
Program slicing is used beyondDAE architectures. Decoupled
Software Pipelining (DSWP) [41] is a popular transforma-
tion that decouples strongly connected components in the
program dependence graph into separate pipeline stages
mapped over multiple PEs communicating via FIFOs. The
PEs can be CPU threads, or pipeline stages in an accelerator
generated by HLS [33]. Control dependent pipeline stages in
DSWP can also be executed speculatively, although stages
with memory operations require versioned memory [58].

Control speculation has its roots in compilers for VLIWma-
chines. Instruction scheduling in HLS is very similar to VLIW
scheduling (no hardware support for speculation, static map-
ping to functional units, etc.), with many algorithms like
modulo-scheduling and if -conversion originally developed
for VLIW directly applicable to HLS [2, 42, 50]. Most recently,
predicated execution in the form of gated SSA was proposed

for HLS with speculation support [23]. The speculation sup-
port in this and other works requires costly recovery on
mis-speculation [6, 22, 30, 35, 56, 60]. Efficiently squashing
speculative computation on the wrong paths in a spatial
dataflow architecture is hard, because the architectural state
is distributed [10]. Our speculative DAE sidesteps this issue,
not requiring any recovery: we speculate early (run ahead)
in the AGU, and later handle mis-speculations in the CU by
taking an appropriate path in its CFG.
Control-flow handling in GPUs is usually implemented

via predication. The algorithms used to calculate predicate
masks and re-convergence points resemble our work [32].
The SIMT stack approach in GPUs pushes predicate masks
onto a stack when entering a control-flow nesting level, and
pops when exiting. Our Algorithm 1 implementing specula-
tive requests can be seen as a pass through the CFGwith only
push operations, where the push is onto individual stacks of
control-dependency sources. Dually, our inserting of poison
calls in Algorithm 1 can be seen as a pass through the CFG
with only pop operations where the placement of the pops
follows a certain policy just like modern SIMT compilers fol-
low different policies to prevent SIMT deadlock and livelock,
or to improve performance [19], instead of popping at the
immediate post-dominator.

10 Conclusion
We have presented general compiler support for specula-
tive memory operations in DAE architectures that tackles
the LoD problem resulting from control dependencies. We
have proposed CFG transformations implementing specula-
tion in the address generation slice, and poisoning of mis-
speculations in the compute slice, with a proof of correctness.

We have presented three applications where our work im-
proves support for the efficient execution of irregular codes:
DAE-based CPU/GPU prefetchers that require compiler sup-
port, CGRA architectures, and HLS-generated specialized
accelerators. We have evaluated our work on HLS-generated
accelerators, showing an average 1.9× (up to 3×) speedup
over non-DAE accelerators on a set of irregular benchmarks
where DAE is not possible without our speculation. Our ap-
proach has no mis-speculation cost and a small code size
footprint, scaling well to deeply nested control flow.

Future work could investigate vector-parallelism support
by filling a vector of speculative requests in the AGU and
producing a store mask in the CU, similar to the recent work
on decoupled vector runahead prefetching in CPUs [36].

Data-Availability Statement
We make our work and evaluation publicly available [52].

Acknowledgments
We thank Intel for access to FPGAs through their DevCloud.
This work was supported by a UK EPSRC PhD scholarship.



Compiler Support for Speculation in Decoupled Access/Execute Architectures CC ’25, March 1–2, 2025, Las Vegas, NV, USA

References
[1] Mythri Alle, Antoine Morvan, and Steven Derrien. 2013. Runtime

dependency analysis for loop pipelining in High-Level Synthesis. In
2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC). 1–10.
doi:10.1145/2463209.2488796

[2] J. R. Allen, Ken Kennedy, Carrie Porterfield, and Joe Warren. 1983.
Conversion of control dependence to data dependence. In Proceedings
of the 10th ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages (Austin, Texas) (POPL ’83). Association for Computing
Machinery, New York, NY, USA, 177–189. doi:10.1145/567067.567085

[3] Michael Andersch, Greg Palmer, Ronny Krashinsky, Nick Stam, Vishal
Mehta, Gonzalo Brito, and Sridhar Ramaswamy. 2022. NVIDIA Hop-
per Architecture In-Depth. https://developer.nvidia.com/blog/nvidia-
hopper-architecture-in-depth/

[4] ARM. 2024. AXI protocol overview. https://developer.arm.com/
documentation/102202/0300/AXI-protocol-overview

[5] José-María Arnau, Joan-Manuel Parcerisa, and Polychronis Xekalakis.
2012. Boosting mobile GPU performance with a decoupled access/exe-
cute fragment processor. In Proceedings of the 39th Annual International
Symposium on Computer Architecture (Portland, Oregon) (ISCA ’12).
IEEE Computer Society, USA, 84–93.

[6] David I. August, Daniel A. Connors, Scott A. Mahlke, John W. Sias,
Kevin M. Crozier, Ben-Chung Cheng, Patrick R. Eaton, Qudus B. Olani-
ran, andWen-meiW. Hwu. 1998. Integrated predicated and speculative
execution in the IMPACT EPIC architecture. SIGARCH Comput. Archit.
News 26, 3 (apr 1998), 227–237. doi:10.1145/279361.279391

[7] Helge Bahmann, Nico Reissmann, Magnus Jahre, and Jan Christian
Meyer. 2015. Perfect Reconstructability of Control Flow from Demand
Dependence Graphs. ACM Trans. Archit. Code Optim. 11, 4, Article 66
(jan 2015), 25 pages. doi:10.1145/2693261

[8] Scott Beamer, Krste Asanovic, and David A. Patterson. 2015. The
GAP Benchmark Suite. CoRR abs/1508.03619 (2015). arXiv:1508.03619
http://arxiv.org/abs/1508.03619

[9] Peter L. Bird, Alasdair Rawsthorne, and Nigel P. Topham. 1993. The
effectiveness of decoupling. In Proceedings of the 7th International
Conference on Supercomputing (Tokyo, Japan) (ICS ’93). Association
for Computing Machinery, New York, NY, USA, 47–56. doi:10.1145/
165939.165952

[10] M. Budiu, P.V. Artigas, and S.C. Goldstein. 2005. Dataflow: A Comple-
ment to Superscalar. In IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). doi:10.1109/ISPASS.2005.
1430572

[11] Tao Chen and G. Edward Suh. 2016. Efficient data supply for hardware
accelerators with prefetching and access/execute decoupling. In 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). 1–12. doi:10.1109/MICRO.2016.7783749

[12] Tao Chen and G Edward Suh. 2016. Efficient data supply for hardware
accelerators with prefetching and access/execute decoupling. In 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 1–12.

[13] Xinyu Chen, Hongshi Tan, Yao Chen, Bingsheng He, Weng-Fai Wong,
and Deming Chen. 2021. ThunderGP: HLS-based Graph Processing
Framework on FPGAs. In The 2021 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays (Virtual Event, USA) (FPGA
’21). Association for Computing Machinery, New York, NY, USA, 69–80.
doi:10.1145/3431920.3439290

[14] Jianyi Cheng. 2019. HLS_Benchmarks. doi:10.5281/zenodo.3561115
[15] Shaoyi Cheng and John Wawrzynek. 2014. Architectural synthesis

of computational pipelines with decoupled memory access. In 2014
International Conference on Field-Programmable Technology (FPT). 83–
90. doi:10.1109/FPT.2014.7082758

[16] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael,
Adrian Caulfield, Todd Massengill, Ming Liu, Mahdi Ghandi, Daniel Lo,

Steve Reinhardt, Shlomi Alkalay, Hari Angepat, Derek Chiou, Alessan-
dro Forin, Doug Burger, Lisa Woods, Gabriel Weisz, Michael Hasel-
man, and Dan Zhang. 2018. Serving DNNs in Real Time at Datacen-
ter Scale with Project Brainwave. IEEE Micro 38 (March 2018), 8–
20. https://www.microsoft.com/en-us/research/publication/serving-
dnns-real-time-datacenter-scale-project-brainwave/

[17] Neal C. Crago, Sana Damani, Karthikeyan Sankaralingam, and
Stephen W. Keckler. 2024. WASP: Exploiting GPU Pipeline Paral-
lelism with Hardware-Accelerated Automatic Warp Specialization. In
2024 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). 1–16. doi:10.1109/HPCA57654.2024.00086

[18] Neal Clayton Crago and Sanjay Jeram Patel. 2011. OUTRIDER: efficient
memory latency tolerance with decoupled strands. SIGARCH Comput.
Archit. News 39, 3 (jun 2011), 117–128. doi:10.1145/2024723.2000079

[19] Ahmed ElTantawy and Tor M. Aamodt. 2016. MIMD synchronization
on SIMT architectures. In The 49th Annual IEEE/ACM International
Symposium on Microarchitecture (Taipei, Taiwan) (MICRO-49). IEEE
Press, Article 11, 14 pages.

[20] Zhihua Fan, Wenming Li, Shengzhong Tang, Xuejun An, Xiaochun Ye,
and Dongrui Fan. 2023. Improving utilization of dataflow architectures
through software and hardware co-design. In European Conference on
Parallel Processing. Springer, 245–259.

[21] Shane T. Fleming and David B. Thomas. 2017. Using Runahead Ex-
ecution to Hide Memory Latency in High Level Synthesis. In 2017
International Symposium on Field-Programmable Custom Computing
Machines (FCCM). 109–116. doi:10.1109/FCCM.2017.33

[22] Hagen Gädke and Andreas Koch. 2008. Accelerating Speculative Exe-
cution in High-Level Synthesis with Cancel Tokens. In Reconfigurable
Computing: Architectures, Tools and Applications, Roger Woods, Kather-
ine Compton, Christos Bouganis, and Pedro C. Diniz (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 185–195.

[23] Jean-Michel Gorius, Simon Rokicki, and Steven Derrien. 2024. A
Unified Memory Dependency Framework for Speculative High-Level
Synthesis. In Proceedings of the 33rd ACM SIGPLAN International Con-
ference on Compiler Construction (Edinburgh, United Kingdom) (CC
2024). Association for Computing Machinery, New York, NY, USA,
13–25. doi:10.1145/3640537.3641581

[24] Tae Jun Ham, Juan L. Aragón, and Margaret Martonosi. 2015. DeSC:
decoupled supply-compute communication management for hetero-
geneous architectures. In Proceedings of the 48th International Sym-
posium on Microarchitecture (Waikiki, Hawaii) (MICRO-48). Asso-
ciation for Computing Machinery, New York, NY, USA, 191–203.
doi:10.1145/2830772.2830800

[25] Tae Jun Ham, Juan L. Aragón, and Margaret Martonosi. 2017. Decou-
pling Data Supply from Computation for Latency-Tolerant Commu-
nication in Heterogeneous Architectures. ACM Trans. Archit. Code
Optim. 14, 2, Article 16 (jun 2017), 27 pages. doi:10.1145/3075620

[26] John L. Hennessy and David A. Patterson. 2019. A New Golden Age for
Computer Architecture. Commun. ACM (2019). doi:10.1145/3282307

[27] Tu Hong, Ning Guan, Chen Yin, Qin Wang, Jianfei Jiang, Jing Jin,
Guanghui He, and Naifeng Jing. 2020. Decoupling the multi-rate
dataflow execution in coarse-grained reconfigurable array. In 2020
IEEE International Symposium on Circuits and Systems (ISCAS). IEEE.

[28] Mike Hutton, Jay Schleicher, David Lewis, Bruce Pedersen, Richard
Yuan, Sinan Kaptanoglu, Gregg Baeckler, Boris Ratchev, Ketan Padalia,
Mark Bourgeault, Andy Lee, Henry Kim, and Rahul Saini. 2004. Im-
proving FPGA Performance and Area Using an Adaptive Logic Module.
In Field Programmable Logic and Application, Jürgen Becker, Marco
Platzner, and Serge Vernalde (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 135–144.

[29] Intel. [n. d.]. Intel/LLVM. https://github.com/intel/llvm/tree/sycl
[30] Lana Josipovic, Andrea Guerrieri, and Paolo Ienne. 2019. Speculative

Dataflow Circuits. In Proceedings of the 2019 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. ACM, 162–171. doi:10.

https://doi.org/10.1145/2463209.2488796
https://doi.org/10.1145/567067.567085
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://developer.arm.com/documentation/102202/0300/AXI-protocol-overview
https://developer.arm.com/documentation/102202/0300/AXI-protocol-overview
https://doi.org/10.1145/279361.279391
https://doi.org/10.1145/2693261
https://arxiv.org/abs/1508.03619
http://arxiv.org/abs/1508.03619
https://doi.org/10.1145/165939.165952
https://doi.org/10.1145/165939.165952
https://doi.org/10.1109/ISPASS.2005.1430572
https://doi.org/10.1109/ISPASS.2005.1430572
https://doi.org/10.1109/MICRO.2016.7783749
https://doi.org/10.1145/3431920.3439290
https://doi.org/10.5281/zenodo.3561115
https://doi.org/10.1109/FPT.2014.7082758
https://www.microsoft.com/en-us/research/publication/serving-dnns-real-time-datacenter-scale-project-brainwave/
https://www.microsoft.com/en-us/research/publication/serving-dnns-real-time-datacenter-scale-project-brainwave/
https://doi.org/10.1109/HPCA57654.2024.00086
https://doi.org/10.1145/2024723.2000079
https://doi.org/10.1109/FCCM.2017.33
https://doi.org/10.1145/3640537.3641581
https://doi.org/10.1145/2830772.2830800
https://doi.org/10.1145/3075620
https://doi.org/10.1145/3282307
https://github.com/intel/llvm/tree/sycl
https://doi.org/10.1145/3289602.3293914
https://doi.org/10.1145/3289602.3293914


CC ’25, March 1–2, 2025, Las Vegas, NV, USA Robert Szafarczyk, Syed Waqar Nabi, and Wim Vanderbauwhede

1145/3289602.3293914
[31] Lana Josipović, Andrea Guerrieri, and Paolo Ienne. 2022. From C/C++

Code to High-Performance Dataflow Circuits. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (2022). doi:10.
1109/TCAD.2021.3105574

[32] Adam Levinthal and Thomas Porter. 1984. Chap - a SIMD graphics
processor. In Proceedings of the 11th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’84). Association for
ComputingMachinery, New York, NY, USA, 77–82. doi:10.1145/800031.
808581

[33] Feng Liu, Soumyadeep Ghosh, Nick P. Johnson, and David I. August.
2014. CGPA: Coarse-Grained Pipelined Accelerators. In Proceedings
of the 51st Annual Design Automation Conference (San Francisco, CA,
USA) (DAC ’14). Association for Computing Machinery, New York, NY,
USA, 1–6. doi:10.1145/2593069.2593105

[34] Jiantao Liu, Carmine Rizzi, and Lana Josipović. 2022. Load-Store
Queue Sizing for Efficient Dataflow Circuits. In 2022 International
Conference on Field-Programmable Technology (ICFPT). 1–9. doi:10.
1109/ICFPT56656.2022.9974425

[35] Scott A. Mahlke, William Y. Chen, Wen-mei W. Hwu, B. Ramakrishna
Rau, and Michael S. Schlansker. 1992. Sentinel scheduling for VLIW
and superscalar processors. SIGPLAN Not. 27, 9 (sep 1992), 238–247.
doi:10.1145/143371.143529

[36] Ajeya Naithani, Jaime Roelandts, Sam Ainsworth, Timothy M. Jones,
and Lieven Eeckhout. 2023. Decoupled Vector Runahead. In Proceedings
of the 56th Annual IEEE/ACM International Symposium on Microarchi-
tecture (Toronto, ON, Canada) (MICRO ’23). Association for Computing
Machinery, New York, NY, USA, 17–31. doi:10.1145/3613424.3614255

[37] Quan M. Nguyen and Daniel Sanchez. 2021. Fifer: Practical Acceler-
ation of Irregular Applications on Reconfigurable Architectures. In
MICRO-54: 54th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (Virtual Event, Greece) (MICRO ’21). Association for
Computing Machinery, New York, NY, USA, 1064–1077. doi:10.1145/
3466752.3480048

[38] Quan M. Nguyen and Daniel Sanchez. 2023. Phloem: Automatic Ac-
celeration of Irregular Applications with Fine-Grain Pipeline Paral-
lelism. In 2023 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). 1262–1274. doi:10.1109/HPCA56546.
2023.10071026

[39] Tony Nowatzki, Vinay Gangadhar, Newsha Ardalani, and Karthikeyan
Sankaralingam. 2017. Stream-dataflow acceleration. In Proceedings of
the 44th Annual International Symposium on Computer Architecture.
416–429.

[40] Karl J. Ottenstein, Robert A. Ballance, and Arthur B. Maccabe. 1990.
The program dependence web: a representation supporting control-,
data-, and demand-driven interpretation of imperative languages. In
PLDI ’90.

[41] G. Ottoni, R. Rangan, A. Stoler, and D.I. August. 2005. Automatic
thread extraction with decoupled software pipelining. In 38th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO’05).
12 pp.–118. doi:10.1109/MICRO.2005.13

[42] Joseph CH Park and Mike Schlansker. 1991. On predicated execution.
Hewlett-Packard Laboratories Palo Alto, California.

[43] Michael Pellauer, Yakun Sophia Shao, Jason Clemons, Neal Crago,
Kartik Hegde, Rangharajan Venkatesan, Stephen W Keckler, Christo-
pher W Fletcher, and Joel Emer. 2019. Buffets: An efficient and com-
posable storage idiom for explicit decoupled data orchestration. In
Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems.
137–151.

[44] W. W. Peterson, T. Kasami, and N. Tokura. 1973. On the capabilities of
while, repeat, and exit statements. Commun. ACM 16, 8 (Aug. 1973),
503–512. doi:10.1145/355609.362337

[45] Raghu Prabhakar and Sumti Jairath. 2021. SambaNova SN10
RDU:Accelerating Software 2.0 with Dataflow. In 2021 IEEE Hot Chips.
1–37. doi:10.1109/HCS52781.2021.9567250

[46] Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian
Zhao, Stefan Hadjis, Ardavan Pedram, Christos Kozyrakis, and Kunle
Olukotun. 2017. Plasticine: A Reconfigurable Architecture For Parallel
Paterns. In Proceedings of the 44th Annual International Symposium on
Computer Architecture (Toronto, ON, Canada) (ISCA ’17). Association
for Computing Machinery, New York, NY, USA, 389–402. doi:10.1145/
3079856.3080256

[47] Shantian Qin, Wenming Li, Zhihua Fan, Zhen Wang, Tianyu Liu,
Haibin Wu, Kunming Zhang, Xuejun An, Xiaochun Ye, and Dongrui
Fan. 2023. ROMA: A Reconfigurable On-chip Memory Architecture for
Multi-core Accelerators. In 2023 IEEE International Conference on High
Performance Computing & Communications, Data Science & Systems,
Smart City & Dependability in Sensor, Cloud & Big Data Systems &
Application. IEEE, 49–57.

[48] Parthasarathy Ranganathan, Daniel Stodolsky, Jeff Calow, Jeremy
Dorfman, Marisabel Guevara, Clinton Wills Smullen IV, Aki Kuusela,
Raghu Balasubramanian, Sandeep Bhatia, Prakash Chauhan, et al. 2021.
Warehouse-scale video acceleration: co-design and deployment in the
wild. In Proceedings of the 26th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems.
600–615.

[49] Fabrice Rastello. 2016. SSA-based Compiler Design (1st ed.). Springer
Publishing Company, Incorporated.

[50] B. Ramakrishna Rau. 1994. Iterative modulo Scheduling: An Algorithm
for Software Pipelining Loops. In Proceedings of the 27th Annual Inter-
national Symposium on Microarchitecture. doi:10.1145/192724.192731

[51] James E. Smith. 1982. Decoupled Access/Execute Computer Archi-
tectures. In Proceedings of the 9th Annual Symposium on Computer
Architecture (Austin, Texas, USA) (ISCA ’82). IEEE Computer Society
Press, Washington, DC, USA, 112–119.

[52] Robert Szafarczyk. 2025. Compiler Support for Speculation in Decoupled
Access/Execute Architectures - code & evaluation. doi:10.5281/zenodo.
14678644

[53] Robert Szafarczyk, Syed Waqar Nabi, and Wim Vanderbauwhede.
2023. Compiler Discovered Dynamic Scheduling of Irregular Code in
High-Level Synthesis. In 2023 33rd International Conference on Field-
Programmable Logic and Applications (FPL). 1–9. doi:10.1109/FPL60245.
2023.00009

[54] Robert Szafarczyk, Syed Waqar Nabi, andWim Vanderbauwhede. 2023.
A High-Frequency Load-Store Queue with Speculative Allocations
for High-Level Synthesis. In 2023 International Conference on Field
Programmable Technology (ICFPT). 115–124. doi:10.1109/ICFPT59805.
2023.00018

[55] Robert Szafarczyk, Syed Waqar Nabi, andWim Vanderbauwhede. 2025.
Dynamic Loop Fusion in High-Level Synthesis. In Proceedings of the
2025 ACM/SIGDA International Symposium on Field Programmable Gate
Arrays (Monterey, CA, USA) (FPGA ’25). Association for Computing
Machinery, New York, NY, USA. doi:10.1145/3706628.3708871

[56] Benjamin Thielmann, Jens Huthmann, and Andreas Koch. 2012.
Memory Latency Hiding by Load Value Speculation for Reconfig-
urable Computers. ACM Trans. Reconfigurable Technol. Syst. (2012).
doi:10.1145/2362374.2362377

[57] N. Topham, A. Rawsthorne, C. McLean, M. Mewissen, and P. Bird.
1995. Compiling and Optimizing for Decoupled Architectures. In
Supercomputing ’95:Proceedings of the 1995 ACM/IEEE Conference on
Supercomputing. 40–40. doi:10.1145/224170.224301

[58] Neil Vachharajani, Ram Rangan, Easwaran Raman, Matthew J. Bridges,
Guilherme Ottoni, and David I. August. 2007. Speculative Decou-
pled Software Pipelining. In 16th International Conference on Par-
allel Architecture and Compilation Techniques (PACT 2007). 49–59.
doi:10.1109/PACT.2007.4336199

https://doi.org/10.1145/3289602.3293914
https://doi.org/10.1109/TCAD.2021.3105574
https://doi.org/10.1109/TCAD.2021.3105574
https://doi.org/10.1145/800031.808581
https://doi.org/10.1145/800031.808581
https://doi.org/10.1145/2593069.2593105
https://doi.org/10.1109/ICFPT56656.2022.9974425
https://doi.org/10.1109/ICFPT56656.2022.9974425
https://doi.org/10.1145/143371.143529
https://doi.org/10.1145/3613424.3614255
https://doi.org/10.1145/3466752.3480048
https://doi.org/10.1145/3466752.3480048
https://doi.org/10.1109/HPCA56546.2023.10071026
https://doi.org/10.1109/HPCA56546.2023.10071026
https://doi.org/10.1109/MICRO.2005.13
https://doi.org/10.1145/355609.362337
https://doi.org/10.1109/HCS52781.2021.9567250
https://doi.org/10.1145/3079856.3080256
https://doi.org/10.1145/3079856.3080256
https://doi.org/10.1145/192724.192731
https://doi.org/10.5281/zenodo.14678644
https://doi.org/10.5281/zenodo.14678644
https://doi.org/10.1109/FPL60245.2023.00009
https://doi.org/10.1109/FPL60245.2023.00009
https://doi.org/10.1109/ICFPT59805.2023.00018
https://doi.org/10.1109/ICFPT59805.2023.00018
https://doi.org/10.1145/3706628.3708871
https://doi.org/10.1145/2362374.2362377
https://doi.org/10.1145/224170.224301
https://doi.org/10.1109/PACT.2007.4336199


Compiler Support for Speculation in Decoupled Access/Execute Architectures CC ’25, March 1–2, 2025, Las Vegas, NV, USA

[59] ZhengrongWang and Tony Nowatzki. 2019. Stream-basedMemory Ac-
cess Specialization for General Purpose Processors. In 2019 ACM/IEEE
46th Annual International Symposium on Computer Architecture (ISCA).
736–749.

[60] Jian Weng, Sihao Liu, Vidushi Dadu, Zhengrong Wang, Preyas Shah,
and Tony Nowatzki. 2020. DSAGEN: Synthesizing Programmable Spa-
tial Accelerators. In 2020 ACM/IEEE 47th Annual International Sympo-
sium on Computer Architecture (ISCA). 268–281. doi:10.1109/ISCA45697.
2020.00032

[61] Dhananjaya Wijerathne, Zhaoying Li, Manupa Karunarathne, Anuj
Pathania, and Tulika Mitra. 2019. CASCADE: High Throughput Data
Streaming via Decoupled Access-Execute CGRA. ACM Trans. Embed.
Comput. Syst. 18, 5s, Article 50 (Oct. 2019), 26 pages. doi:10.1145/
3358177

[62] Zeping Xue and David B. Thomas. 2016. SynADT: Dynamic Data
Structures in High Level Synthesis. In 2016 IEEE 24th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM). 64–71. doi:10.1109/FCCM.2016.26

Received 2024-11-12; accepted 2024-12-21

https://doi.org/10.1109/ISCA45697.2020.00032
https://doi.org/10.1109/ISCA45697.2020.00032
https://doi.org/10.1145/3358177
https://doi.org/10.1145/3358177
https://doi.org/10.1109/FCCM.2016.26

	Abstract
	1 Introduction
	2 Motivating Example
	3 Background
	3.1 Architectural Support
	3.2 Compiler Preliminaries

	4 Loss-of-Decoupling Analysis
	5 Compiler Support for Speculation
	5.1 Speculating Memory Requests
	5.2 Poisoning Mis-speculated Stores
	5.3 Merging Poison Blocks
	5.4 Speculative Load Consumption

	6 Safety and Liveness
	7 Applications
	7.1 CPU/GPU Prefetchers
	7.2 Coarse Grain Reconfigurable Architectures
	7.3 High-Level Synthesis

	8 Evaluation
	8.1 Methodology
	8.2 Performance
	8.3 Code Size

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

