
COMP390

2020/21

Accelerating Biological Sequence Alignment
with GPU

Student Name: Robert Szafarczyk
Student ID: 201307211
Primary Supervisor Name: Dr. Thomas Carroll
Secondary Supervisor Name: Professor Prudence Wong

Department of
Computer Science

University of Liverpool
Liverpool L69 3BX

Acknowledgements
I would like to thank my supervisors Dr. Thomas Carroll and Professor Pru-
dence Wong for their support and constructive criticism during the project. Their
comments have improved the quality of this work. Special thanks to Thomas
for introducing me to the world of GPGPU programming and for running GPU
tutorial sessions at the beginning of the academic year.

I would also like to thank all the other lecturers, teachers, and co-workers,
past and present, from whom I was lucky enough to learn.

Finally, I thank my family, friends and partner for their vital support in my
studies.

COMP390

2020/21

Accelerating Biological Sequence Alignment
with GPU

Department of
Computer Science

University of Liverpool
Liverpool L69 3BX

Abstract
In bioinformatics, pairwise sequence alignment is the use of computational meth-
ods to find regions of similarity between two biological sequences. As sequenc-
ing technology improves and scientists are able to recover ever longer DNA or
Protein sequences, the computational load of sequence alignment increased. This
project uses the Graphics Processing Unit (GPU) to accelerate the Needleman-
Wunsch (NW) and Smith-Waterman (SW) dynamic programming algorithms to
solve global and local sequence alignment.

GPU memory sizes are an order of magnitude smaller than CPU memory,
which poses a problem when aligning longer sequences on the GPU. A modular
concurrent GPU kernel design is shown, which enables the alignment of very
long sequences, limited only by the host memory size.

Inter-kernel synchronisation on GPUs can be expensive, which often pro-
hibits employing all Streaming Multiprocessors (SMs) of a GPU to work on the
same problem, especially if that problem requires data communication between
parts of the algorithm. This project used a lightweight barrier in GPU global
memory to synchronise concurrently executing kernels and enable data commu-
nication.

Throughput, latency and performance scalability results for the GPU imple-
mentation are presented and evaluated. The improvement of using more concur-
rently executing kernels is studied and discussed.

i

Contents
1 Introduction 1

1.1 Sequence alignment . 1
1.2 General Purpose GPU programming . 2
1.3 Aims & Objectives . 3
1.4 Ethical considerations . 4

2 Background 5
2.1 Pairwise sequence alignment . 5
2.2 GPU architecture . 9
2.3 CUDA programming model . 10
2.4 Related work . 12

3 Design for parallelism 13
3.1 Dependencies in the recurrence relation . 13
3.2 Data structures . 15
3.3 Concurrent kernel execution . 18

4 Scalable implementation 21
4.1 Program data flow . 21
4.2 Needleman-Wunsch (NW) GPU kernel . 23
4.3 Smith-Waterman (SW) GPU kernel . 25
4.4 Concurrent kernel orchestration . 26

5 Testing & Evaluation 28
5.1 Correctness verification . 28
5.2 Performance results . 29
5.3 Concurrent kernel evaluation . 34

6 Conclusion 37
6.1 Aims & Objectives . 37
6.2 BCS Criteria . 39
6.3 Self-Reflection & Future Work . 40

References 42

A Experimental setup 43

B sequence-alignment-gpu readme 44

ii

List of Figures

1.1 An example alignment of ACCT with ATCT. A’s are aligned, then a gap is
inserted instead of aligning C with T, followed by aligning the C’s and T’s. . . 2

1.2 Control (yellow) transistor budget in the CPU is spent on compute units
(green) in the GPU (CUDA Programming Guide [7]). 2

2.1 Needleman-Wunsch Dynamic Programming algorithm simulation. 7
2.2 GPU memory hierarchy access times (CUDA Programming Guide [7]). Note

that constant, texture and local memory are a substrate of global memory;
they have the same latency, but varying access privilege. 10

2.3 Thread and memory hierarchy of the GPU (CUDA Programming Guide [7]). 11

3.1 Throughput results for horizontal and diagonal parallelism. Measured in Mil-
lions of Cell Updates per Second (MCUPS). 15

3.2 Shared memory buffers (green, blue, red) used in the recurrence relation.
They are indexed from top to bottom, with every diagonal index maintaining
the same row throughout execution. 16

3.3 Sequence characters are transformed into an internal representation to make
the scoring function implementable as a Look Up Table. 17

3.4 Three 2× 8 kernels are able to execute concurrently, once the pipeline is
sufficiently filled. Green cells represent work already done, and the black
lines represent the currently executing diagonals. 18

4.1 Request and Response objects used internally to pass data to and from the
alignment algorithms (memory allocation and deallocation omitted here). . . 22

4.2 Example output from the alignSequence program. 22
4.3 High-level data flow of alignSequence. Green boxes represent GPU kernels. 23
4.4 Output from the Nvidia Visual Profiler tool, showing the timeline of a se-

quential and concurrent kernel execution. 26

5.1 Test suite output on a Barkla compute node. 29
5.2 Throughput results for filling out the matrix M in NW (top) and SW (bottom).

In NW, sequences are of equal length. In SW, the second sequence length is
fixed at 32k. 31

5.3 End-to-End alignSequence latency results for NW (top) and SW (bottom).
In NW, sequences are of equal length. In SW, the second sequence length is
fixed at 32k. 32

iii

5.4 End-to-End latency of aligning multiple sequences in batch using NW. The
length of the sequences is fixed at 8192×8192. 33

5.5 Domain decomposition of an r×c matrix into k concurrently executing ker-
nels. The red trapezoid represents the area of the matrix needed to be filled
before all kernels can execute concurrently. The green area can be worked on
by all kernels. 34

5.6 Throughput scaling with increased number of concurrently executing kernels
on an Nvidia Tesla V100 GPU (80 SMs). Throughput is measured in Millions
of Cell Updates Per Second (MCUPS). 35

iv

List of Code Listings

1 fillMatrixNW . 24
2 max reduce . 25
3 Concurrent kernel orchestration . 27
4 Example unit test . 28

v

Chapter 1

Introduction

In this chapter, the problem of biological sequence alignment is introduced. The motivation
behind using the GPU for this problem is explained, and some common applications are
presented. The concept of General Purpose GPU programming is introduced and put into a
historical context. Finally, the aims and objectives of this project are diffused into a list, and
the ethical considerations of achieving them are mentioned.

1.1 Sequence alignment
Bioinformatics is an interdisciplinary field that aims to better understand the vast amounts of
biological data through computational methods. As computers have become more powerful,
bioinformatics tools have helped to bridge the gap between large, irregular biological data
sets and human understanding. Especially in genetics, where Deoxyribonucleic acid (DNA)
and Protein sequences of organisms are studied, the help of computers is invaluable - a virus
is a relatively simple organism, but its genome can have up to 40 thousand base pairs; human
genomes can have up to 3 billion base pairs. Sequence alignment aims to arrange sequences
of DNA, or protein to identify regions of similarity that may be a consequence of functional,
structural, or evolutionary relationships between the sequences [12]. It is an essential part
of the geneticist’s toolbox. By assigning a similarity score to two sequences, researchers are
better able to reason about evolution, determine ancestry and more effectively cure diseases.
For example, using sequence alignment software, researchers have identified a gene believed
to encode the unique ability to hop in animals [3]. Sequence alignment is a big part of “urgent
computing”, not least in the Covid-19 pandemic where through the use of sequence alignment
software, researchers could better study the virus and quickly identify mutations [15].

As more and longer sequences are analysed, the computational complexity of alignment
increases. Faster tools are desired. This project demonstrates that the Graphics Processing
Unit (GPU) offers a way to accelerate sequence alignment through exploiting data parallelism
ingrained in the problem.

1

A C C T
| — | |
A T C T

Figure 1.1: An example alignment of ACCT with ATCT. A’s are aligned, then a gap is
inserted instead of aligning C with T, followed by aligning the C’s and T’s.

1.2 General Purpose GPU programming
In order to meet the computational requirements of advances in computer graphics in the
1980s and 1990s, chip manufactures started producing special-purpose processors. The ever-
increasing screen resolutions meant that the CPU couldn’t process all the pixels on time - it
lacked parallelism needed to apply the same operation to first thousands and then millions
of pixels at the same time. At the end of the millennia, the term “Graphics Processing Unit
(GPU)” emerged to mean a special processor attached to the CPU, intended to accelerate
computer graphics programs. A GPU trades expensive control structures (branch predictors,
out-of-order execution, etc.) found on the CPU for many lightweight compute cores (figure
1.2).

In the early 2000s, the parallelism of the GPU started to be used for general purpose
programming. Initially, computation was expressed through graphics APIs, like OpenGL
and DirectX. However, this was cumbersome, and in 2006 Nvidia introduced the Compute
Unified Device Architecture (CUDA) as a programming model for General Purpose GPU
(GPGPU) Programming. In 2009, OpenCL was released as an open standard alternative to
the proprietary CUDA framework.

Nvidia and AMD are currently two of the main GPU manufactures. Fundamentally,
their architecture is similar, with the main differences lying in how concepts are named.
This project used Nvidia GPUs with CUDA, and consequently follows terminology used by
Nvidia.

Figure 1.2: Control (yellow) transistor budget in the CPU is spent on compute units (green)
in the GPU (CUDA Programming Guide [7]).

2

1.3 Aims & Objectives
The goal of this project was to accelerate the Needleman-Wunsch (NW) and Smith-Waterman
(SW) sequence alignment algorithms on the GPU. During the project, the aim of enabling the
alignment of very long sequences was added. This high level goal was decomposed into a
list of aims and objectives in the Project Proposal document. The list is repeated here, with
additional items added which emerged during the execution of the project.

Aims:

• Understanding the problem of sequence alignment in the context of bioinformatics.

• Understanding the GPU architecture, the underlying programming model and gaining
practical experience in accelerating a workload using the GPU.

• Implementing the global sequence alignment algorithm on the GPU.

• Evaluation and understanding of the performance improvement of using a GPU.

• Implementing the local sequence alignment algorithm on the GPU (optional).

• Allowing to align as long sequences as possible, i.e. the limit should be the host mem-
ory size, not the memory size of the GPU (added).

Objectives:

• Implement a global sequence alignment algorithm on the CPU.

• Set up a test framework, including test data generation and performance measurement.

• Design a global sequence alignment algorithm implementation for the GPU, exploiting
the unique features of the architecture.

• Implement the designed algorithm on the GPU.

• Repeat the above for local alignment (optional).

• Run experiments comparing the GPU and CPU.

• Use concurrently executing kernels to employ all GPU resources in aligning longer
sequences (added).

• Evaluation of the performance improvement and scalability of using concurrent GPU
kernels (added).

3

1.4 Ethical considerations
The ethical conduct guidelines available on the COMP390 module page1 and the University
of Liverpool Academic Integrity Policy2 were followed throughout the project. Some project
specific considerations include:

• Test data (DNA or Protein sequences) were either produced randomly or obtained from
a public domain [9] with the right permission. The data were only used in this project
and were not shared further.

• Data generated in the functional and performance testing is reproducible, without any
barriers or considerable effort needed.

• The software produced herein can be compiled and tested on any compatible machine,
as well as on the University’s Barkla compute cluster.

• The results described in this dissertation were generated through individual work. Where
others’ work or ideas have been used, citations were provided.

• The project was carried out in the United Kingdom and didn’t involve any other partic-
ipants.

There are several sources of protein and DNA sequence data available in the public do-
main. This dissertation made use of GenBank, which is a biological sequence database from
the National Institutes of Health (NIH), a part of the U.S. Department of Health and Human
Services [9]. The GenBank database is designed to provide and encourage access within the
scientific community to the most up-to-date and comprehensive biological sequence infor-
mation and places no restrictions on the use or distribution of the data.

1https://student.csc.liv.ac.uk/internal/modules/comp390/2020-21/ethics.php
2https://www.liverpool.ac.uk/media/livacuk/tqsd/code-of-practice-on-assessment/

appendix_L_cop_assess.pdf

4

https://student.csc.liv.ac.uk/internal/modules/comp390/2020-21/ethics.php
https://www.liverpool.ac.uk/media/livacuk/tqsd/code-of-practice-on-assessment/appendix_L_cop_assess.pdf
https://www.liverpool.ac.uk/media/livacuk/tqsd/code-of-practice-on-assessment/appendix_L_cop_assess.pdf

Chapter 2

Background

In this chapter, the problem of pairwise global and local sequence alignment is described in
more detail. Next, an overview of the Nvidia GeForce GT 750M GPU is given as a representa-
tive example of the GPU architecture; together with the accompanying CUDA programming
model. Finally, a non-comprehensive literature survey of related work is conducted.

2.1 Pairwise sequence alignment
First, some common terms used in the problem of sequence alignment are defined.

Alphabet:
A finite set of symbols, denoted by Σ. This project uses two alphabets:

ΣDNA = {A,C,G,T}.
ΣProtein = {A,C,D,E,F,G,H, I,K,L,M,N,P,Q,R,S,T,V,W,Y}.

Sequence:
A finite succession of symbols in Σ, denoted by s. Formally, s ∈ Σ∗.

Substring:
A substring of s is a consecutive succession of symbols in s. Given a sequence s and its
substring s′, such that |s|= m and |s′|= n, it is said that s′ starts at s[i] and ends at s[j],
and both 1≤ i≤ j ≤ m and j− i+1 = n are satisfied. For example, ACT is a substring
of GACTG, but GTG is not.

Subsequence:
A subsequence of s is a sequence obtained by removing zero or more symbols from s.
For example, both ACT and GTG are subsequences of GACTG.

Alignment sequence:
A sequence p and r are pairwise alignments of the sequences s and t, if p is a sub-
sequence of s, and if r is a subsequence of t. If s, t ∈ Σ∗ then p,r ∈ (Σ∪{−})∗, i.e.
the gap character is introduced to represent deletion of a symbol. Figure 1.1 shows an
example of pairwise alignment.

5

Scoring matrix (function):
A function ρ assigning a score to aligning two characters of an alphabet, ρ : Σ×Σ→Z.

Gap penalty:
A score g ∈ Z for aligning a character in Σ with “−” (character deletion).

There exist several types of sequence alignment techniques, each suited for a different
task. This project implemented global and local alignment, which are described next.

2.1.1 Global pairwise sequence alignment
Global alignment aims to find the best alignment along the entire length of two sequences.
The “best” means the one which obtains the highest score when the scoring function is applied
to every character pair of the aligned sequences. The number of possible alignments is equal
to 2n+m; clearly, a brute-force approach quickly becomes intractable. In 1970 Needleman
and Wunsch introduced the idea of using Dynamic Programming (DP) to solve the global
sequence alignment problem [13]. Their algorithm has a running time of O(nm) and requires
O(nm) space. It has become the de facto standard for sequence alignment, with most subse-
quent algorithms being based on their work. The algorithm consists of two main parts - using
DP to solve the recurrence relation, which gives the alignment score, and a traceback using
information from the solved recurrence relation, which gives the alignment (see figure 2.1 for
an example). The algorithm can be summarised as follows.

Input:

Sequence s (text), where |s|= n

Sequence t (pattern), where |t|= m and n≥ m

Initialisation:

M[0,0] = 0

M[i,0] = M[i−1,0]−g, if i > 0

M[0, j] = M[0, j−1]−g, if j > 0

Recurrence relation:

M[i, j] = max

M[i, j−1]−g
M[i−1, j]−g
M[i−1, j−1]+ρ(t[i],s[j])

At each M[i, j], store the selected direction: LEFT, TOP or DIAGONAL.

Traceback:
i = m, j = n
while i > 0 or j > 0 do

if M[i, j] = DIAGONAL then
append s[j] to p

6

append t[i] to r
i = i−1, j = j−1.

else if M[i, j] = TOP then
append s[j] to p
append ’–’ to r
j = j−1.

else if M[i, j] = LEFT then
append “–” to p
append t[i] to r
i = i−1.

end if
end while
reverse p, r.

Output:

Alignment score: M[m,n].
Alignment sequences: p, r.

(1) Input

s = T GGCA, t = AGCA

g = 5, ρ =

A C T G
A 4 −5 −5 −5
C −5 4 −5 −5
T −5 −5 4 −5
G −5 −5 −5 4

(2) Initialisation

j 0 1 2 3 4 5
i − T G G C A
0 − 0 -5 -10 -15 -20 -25
1 A -5
2 G -10
3 C -15
4 A -20

(3) Filling out M using the recurrence relation.

j 0 1 2 3 4 5
i − T G G C A

0 − 0 -5 -10 -15 -20 -25

1 A -5 -4 -9 -14 -19 -16

2 G -10 -9 0 -5 -10 -15

3 C -15 -14 -5 -4 -1 -6

4 A -20 -19 -10 -9 -6 3

(4) Traceback & Output

p = T GGCA

r = AG−CA

score = 3

Figure 2.1: Needleman-Wunsch Dynamic Programming algorithm simulation.

7

2.1.2 Local pairwise sequence alignment
Local alignment, in contrast to global alignment, is used in cases where the sequences share
local regions of similarity but are not necessarily related from the beginning to the end. The
alignment of any substring of s and any substring of t is a local alignment of s and t. It might
seem that this additional search space dimension increases the computational complexity
of a suitable local alignment algorithm. In 1981, Smith and Waterman (SW) proposed a
slight modification to the NW dynamic programming algorithm that allows finding a local
alignment, while keeping the same time and space complexity bounds [17]. The idea relies
on the presence of negative scores in the scoring function, which can cause the running score
to be negative. Adding a fourth term to the recurrence relation resets the score of M[i, j] back
to zero whenever adding a substitution or a gap to the alignment would result in a negative
score. This is what allows the local alignment algorithm to consider all possible starting
positions in s and t. The rest of the algorithm is mostly unchanged, with the only other
difference that the traceback starts at the cell in M with the maximum score and stops once a
score of 0 is encountered.

Input:

Sequence s (text), where |s|= n

Sequence t (pattern), where |t|= m and n≥ m

Initialisation:

M[i,0] = 0, M[i,0] = 0, for all i, j.

Recurrence relation:

M[i, j] = max

M[i, j−1]−g
M[i−1, j]−g
M[i−1, j−1]+ρ(t[i],s[j])
0

At each M[i, j], store the selected direction: LEFT, TOP, DIAGONAL or STOP (for
zero score).

Traceback:
i, j = arg maxi, j M[i, j]
while M[i, j] 6= STOP do

if M[i, j] = DIAGONAL then
append s[j] to p
append t[i] to r
i = i−1, j = j−1.

else if M[i, j] = TOP then
append s[j] to p

8

append ’–’ to r
j = j−1.

else if M[i, j] = LEFT then
append “–” to p
append t[i] to r
i = i−1.

end if
end while
reverse p, r.

Output:

Alignment score: maxi, j M[i, j].

Alignment sequences: p, r.

This project implemented the recurrence relation on the GPU, while the traceback has
only a CPU implementation. This is because the traceback is purely sequential, and also be-
cause the limited amount of GPU memory would pose a problem to executing the traceback
for longer sequences on the GPU. It can also be argued that such a setup would make more
sense in a real system - the GPU can have a work-pool for solving the recurrence relation,
while the CPU could perform the traceback, thus increasing performance of the overall sys-
tem. Although matters of the increased data transfer between the host and GPU would have
to be better studied.

2.2 GPU architecture
The Nvidia GeForce GT 750M1 chip (from here forth 750M) is a parallel, shared memory
processor composed of 384 lightweight cores, dubbed CUDA cores. The cores are aggregated
into 2 Streaming Multiprocessors (SMs), with each SM having 192 CUDA cores. Within a
single SM, computation is orchestrated by a warp scheduler. A warp is a collection of 32
threads, which share an instruction pointer and execute in lockstep. It has a clear mapping to
the hardware - a warp is executed on a 1024-bit SIMD unit, with a CUDA core corresponding
to a single SIMD lane. A word on a GPU is thus 32-bits - a CUDA core is just a single 32-bit
FMA functional unit, rather than a core which one might find in a CPU. Masking is used to
handle divergent threads within a warp, with usually an additional time unit spent per each
branch; a warp can take up to 32 time units to execute in the worst case. The challenge of GPU
programming is to ensure that the CUDA cores are always performing useful computations,
i.e. there should always be a warp to schedule, and all threads within a warp should follow the
same execution path. This task is left to the programmer of the GPU, with no transistors on
the GPU being spent on branch prediction or deep pipeline control circuits. This is probably
the core difference between a GPU and a CPU - all the control circuits found in super-scalar
CPUs are traded for compute units, with the job of extracting parallelism being left to the
programmer. See Figure 1.2 for a conceptual comparison between the CPU and GPU.

1https://www.Nvidia.com/en-gb/geforce/gaming-laptops/geforce-gt-750m/specifications/

9

https://www.Nvidia.com/en-gb/geforce/gaming-laptops/geforce-gt-750m/specifications/

Memory access is often the main bottleneck in programs running on the CPU [8], and it
is no different on the GPU. To combat this, GPU manufactures offer a hierarchy of memory
spaces. Figure 2.3b shows a simplified view. The GPU is sometimes called a “throughput
machine” - a common technique is GPGPU programming is to hide the memory access times
by enough computation. The task of the programmer is to use access patterns which exploit
the memory hierarchy. Local memory is a per-thread substrate of global memory and is desig-
nated to hold data that doesn’t fit in registers (“spilled registers”). The compiler manages this
space, and the programmer doesn’t need to worry about it. Next in the hierarchy, each SM
has its own shared memory which is accessible by all threads in a thread block. This space
is addressable by the programmer, with all cores being able to access data in 1-3 cycles. To
offer such a low latency, the size of the shared memory is limited to 48 KiB per SM, even on
the latest GPUs. Shared memory is banked, with the number of banks equal to the warp size.
If all threads within the warp access a separate bank, all requests execute in unit time. If there
is more than one access to the same bank, it will be synchronised, thus stalling the whole
warp (unless all threads access exactly the same address). There are many documented ac-
cess techniques for shared memory, which are covered in the CUDA C++ programming guide
[7]. Last in the hierarchy is global device memory, accessible by all SMs. It’s composed of
DRAM chips with an access latency of several hundred cycles, and has a size of 2 GB on
the 750M. Global memory is cached transparently to the programmer, and has fewer access
time guarantees compared to shared memory. Furthermore, GPU manufacturers only provide
a weak memory model, meaning read and writes are not ordered, making some synchroni-
sation and concurrency patterns hard to implement. Fortunately, CUDA provides access to
an atomic Compare-And-Swap (CAS) operation, from which all other concurrency patterns
can be implemented, albeit not always efficiently. Figure 2.2 shows a latency comparison
between global memory, shared memory and registers in a GPU.

Memory Scope Access Latency in clock cycles Size on GT 750M
Global global read/write 400-600 2 GiB
Shared block read/write 4 48 KiB

Registers thread read/write 1 65536 per block

Figure 2.2: GPU memory hierarchy access times (CUDA Programming Guide [7]).
Note that constant, texture and local memory are a substrate of global memory; they have

the same latency, but varying access privilege.

2.3 CUDA programming model
CUDA follow a Single Program Multiple Data (SPMD) paradigm and can be thought of as
a special case of Multiple Instructions Multiple Data (MIMD) in Flynn’s taxonomy of paral-
lelism [16]. The programmer writes a scalar program for a single thread, called a “kernel”.
The number of threads is specified in a launch configuration. Threads are organised into
thread blocks, and the thread blocks are further organised into a grid (as shown in figure

10

2.3a). The maximum number of threads in a thread block is 1024. The programmer specifies
the number and dimensions of thread blocks for a particular kernel in a launch configuration.
This interface is scalable by allowing a single kernel to be executed on various GPU con-
figurations, with the actual hardware resources scheduling being left to the warp scheduler.
Within the kernel, the programmer can refer to individual threads by their id, with the possi-
bility of divergent execution based on this value. CUDA offers built-in synchronisation calls
to enforce barriers at the thread block level. Synchronisation of threads across thread blocks
is expensive and generally discouraged.

A GPU kernel executes concurrently with the host code. Most API calls in CUDA have
an asynchronous version, allowing memory transfers between the host and the GPU to ex-
ecute concurrently as well. This is possible thanks to the Direct Memory Access (DMA)
engines on the GPU. A DMA engine allows the GPU to access system main memory asyn-
chronously. To use this feature, the memory written to by the DMA engine must be “pinned”;
it cannot be virtual memory managed by the Operating System. It is also possible to execute
multiple CUDA kernels concurrently by using multiple CUDA streams. A CUDA stream is a
command queue that handles host to device data communication, and device code execution.
These features were important in the design of the GPU algorithms, which will be described
shortly. First, a brief review of related work is conducted.

(a) Blocks are organised into a one-, two-, or
three-dimensional grid of thread blocks.

(b) CUDA threads may access data from multiple
memory spaces during execution.

Figure 2.3: Thread and memory hierarchy of the GPU (CUDA Programming Guide [7]).

11

2.4 Related work
Sequence alignment is a well researched topic in bioinformatics, with the two mainly used
algorithms being Needleman-Wunsch and Smith-Waterman, described before. Established
software tools, which implement these algorithms, have been used successfully for many
years. FASTA is a DNA and Protein alignment tool initially developed in 1985 [14]. Before
performing a full NW or SW algorithm, it uses a heuristic to decrease the search space for
long sequences. Also in the 1980s, BLAST (Basic Local Alignment Search Tool) was in-
troduced and has become one of the most widely used programs for sequence alignment to
this day [2]. Similarly to FASTA, BLAST uses heuristics to decrease the search space, before
applying a NW or SW algorithm. Because of this, both FASTA and BLAST cannot guarantee
that the optimal alignment is found. An option to not use the heuristic exists in both tools.
In recent years, “Bioinformatics tools as a service” have emerged, most notably from the
European Bioinformatics Institute (EMBL-EBI) [11]. EMBL-EBI provides access to many
bioinformatics tools (including NW, SW, BLAST) and a database of biological data through
an unified browser interface and a REST API. This tool was used to verify correctness of the
NW and SW implementation in this project.

Since the advent of GPGPU there has been substantial effort to use GPU resources to ac-
celerate the NW and SW algorithms. Carroll’s thesis offers insights into targeting the GPU for
solving bioinformatics problems [4], with an efficient GPU implementation of semi-global
sequence alignment in the GPUGapsMis tool [5]. This work investigates global and local se-
quence alignment on the GPU. GPU-BLAST is a GPU implementation of the BLAST tool
suite, achieving a speedup of 3-4x compared to the CPU version [18]. CUDASW++ 3.0 is a
very efficient SW implementation, which specifically targets the Nvidia Kepler architecture
[10]. It reports an up to 10x speed up over a CPU version of BLAST. However, it uses SIMD
intrinsic instructions available only in the Kepler architecture; newer Nvidia GPUs emulate
them in software and consequently run slower. Neither of these tools address the issue of
the working data set not fitting in GPU memory, with CUDASW++ 3.0 reporting results on
sequences of maximal length of 35k.

A big part of this project was concurrent kernel execution, referred to in the literature
as GPU inter-block communication or GPU concurrency. Alglave et al. study concurrent
behaviour of GPUs, providing guidance on how to take the weak memory model of GPUs
into account [1]. Xiao and Feng provide examples of several algorithms which benefit from
concurrent kernel execution on GPUs [19]. These pieces of work show that it is possible
and often desirable to have some kind of synchronisation between GPU SMs, contrary to the
usual belief. For example, since the introduction of L2 cache in Kepler atomic operations
have become a viable option for performant concurrent patterns.

12

Chapter 3

Design for parallelism

In this chapter, the design of the GPU algorithms for pairwise global and local sequence align-
ment is described. First, ideas about how to parallelise the recurrence relation are explored
and compared. Next, data structures needed to support the parallelism are described, together
with their mapping to the GPU memory hierarchy. Last, a modular design for aligning longer
sequences based on concurrent GPU kernel execution is described.

3.1 Dependencies in the recurrence relation
The recurrence relations, described in section 2.1, are identical with the difference that for
local alignment the minimum score is 0. The ideas described herein apply equally well to
global and local alignment.

One of the first steps in parallelising an algorithm is to look for dependencies between
operations. If a number of operations have no dependencies between each other and don’t
write to the same memory location, then they can be safely executed in parallel. In NW and
SW, a basic operation is the calculation of the score for a given cell in the M matrix. From
the recurrence relation, it can be seen that a cell M[i, j] depends on the cell to the left, top and
left-diagonal, i.e. M[i, j−1], M[i−1, j] and M[i−1, j−1]:

The first idea of parallelisation explored in this project was to calculate the scores within
the rows in parallel, i.e. the parallelism was expressed horizontally:

13

It quickly became clear that this approach is not correct - the calculation of the scores to the
left within a row has to be serialised (red arrows in the above diagram). A more sophisticated
design was needed to better exploit the GPU. The effort wasn’t all wasted though; some
research into serialising computation on the GPU informed later design decisions.

Back to the drawing board, it was noticed that to get rid of the left dependency, the
parallelism could be expressed across the diagonal:

t (pattern)

s (text)

For example, the filling out of the above 4×4 matrix M can be done as follows.

1. M[0,0] is calculated.

2. M[0,1],M[1,0] are calculated in parallel.

3. M[0,2],M[1,1],M[2,0] are calculated in parallel.

4. M[0,3],M[1,2],M[2,1],M[3,0] are calculated in parallel.

5. M[1,3],M[2,2],M[3,1] are calculated in parallel.

6. M[2,3],M[3,2] are calculated in parallel.

7. M[3,3] is calculated.

All calculations within a single step (1, 2, ..., 7) can be executed in parallel, without any
dependencies within the diagonal. This design was a bit more difficult to implement because
the length of the diagonal isn’t constant, first growing and then shrinking. The fact that some
diagonals have only a few cells might seem like a potential performance bottleneck for the
GPU. In reality, there will only be a performance hit when the length of the diagonal is not
enough to saturate all active warps. This overhead becomes inconsequential as the length of
the sequences grows to more than a couple hundred characters. Figure 3.1 shows that the
throughput of the diagonal approach scales up more or less linearly with the length of the
sequences, while the horizontal approach never performs better than 10 MCUPS (Millions of
Cell Updates per Second). The diagonal approach also has some nice properties which make
the data structures easier to design. This part is described next.

14

64 128 256 512 1020
10

100

200

300

Sequence length

M
C

U
PS

Diagonal
Horizontal

Figure 3.1: Throughput results for horizontal and diagonal parallelism. Measured in
Millions of Cell Updates per Second (MCUPS).

3.2 Data structures
The previous section established the idea of expressing parallelism across the diagonal of the
M matrix. The performance of the ultimate implementation also depends on how the data
used in the recurrence relation are accessed. There are two parts that are considered here: the
dynamic programming matrix M, and the scoring function ρ.

3.2.1 Dynamic programming matrix M
Consider the 4×4 matrix M used as an example in the previous section. Let the threads in a
diagonal be t0, t1, t2, ..., and successive diagonals in M be d0,d1,d2, The diagonal d0 will
contain t0, the diagonal d1 will contain t0, t1, and so on. First, note that there is data reuse
across threads in a diagonal. In general, in the same diagonal the cell to the left of ti is the
cell to the top of ti+1. The cell to the top of ti in the diagonal d j, becomes the cell to the
left-diagonal of ti in the diagonal d j+i.

The properties of the data access into M suggest to keep the scores of M in shared memory.
However, as seen in table 2.2, shared memory has a limited size. If all scores in the matrix
are to be stored, this limit will quickly be reached. Luckily, only the scores from the last two
diagonals are needed. The decision was made to use three buffers to store the scores of M
in shared memory for the diagonals: di,di−1,di−2. The scores from the diagonals before that
can be discarded since they are not used anywhere else. The selected directions at each cell
have to be stored - they are later used in the traceback. They can be written back to global
memory, to be later transferred to the host. From this point, the matrix M is assumed to only
hold the selected directions at each cell, while the scores are only kept in the three shared
memory buffers:

thisScores: stores the scores of di.

prevScores: stores the scores of di−1.

prevPrevScores: stores the scores of di−2.

15

Using these buffers, the recurrence relation for diagonal d j becomes:

thisScores[i] = max

prevScores[i]−g
prevScores[i−1]−g
prevPrevScores[i−1]+ρ(t[i],s[j])

To set up the buffers for diagonal d j+1, the ping-pong buffer technique can be used (memory
pointers are swapped, instead of moving data):

prevScores = thisScores
prevPrevScores = prevScores

thisScores = prevPrevScores

This access pattern guarantees that a single word in the buffers is only accessed by a
single thread, avoiding any memory access serialisation within a warp - each thread within
a warp will access a different memory bank, so that 32 look-ups can be served in unit time.
Furthermore, with the row-major ordering of the M matrix, it can be guaranteed that there is
a constant mapping between indexes into the diagonal and indexes into the pattern sequence
throughout the execution of the algorithm, i.e. every thread can read its pattern character
from memory just once. The access of the text characters is also predictable, with each thread
accessing a unique byte avoiding any global memory access serialisation. This is visualised
in figure 3.2.

0 0 0

1 1 1

2 2

3

thisScores

prevScores

prevPrevScores

next diagonal

0 0

1 1 1

2 2 2

3 3

prevScores

prevPrevScores

thisScores

Figure 3.2: Shared memory buffers (green, blue, red) used in the recurrence relation. They
are indexed from top to bottom, with every diagonal index maintaining the same row

throughout execution.

In the previous chapter, the convention was adopted that the pattern sequence t cannot be
longer than the text sequence (if this is not satisfied by the input, the two sequences can just
be swapped without any difference to the result). From this follows, that the maximum length
of the diagonal will always be equal to the number of rows in the matrix M. As mentioned in
the overview of CUDA (section 2.3), the maximum number of threads within a thread block

16

is 1024. With the above approach the maximum size of M that can be worked on by a thread
block is 1024×m, where m the length of the text sequence. This is not a hard limit, but
increasing the number of rows beyond the maximum number of threads in a single thread
block would require code causing significant thread divergence. Another possible limit is the
global memory size, so if m is large and the 1024×m M matrix storing the selected directions
doesn’t fit into global memory, then the size needs to be scaled down. With the upper limit
of 1024 threads, each buffer has to hold a maximum of 1024 values. Assuming 32-bit values,
the 3 buffers need 24 KiB, fitting comfortably in the 48 KiB size shared memory, even leaving
room for the scoring Look Up Table described next.

3.2.2 Scoring function ρ

The signature of the scoring function is ρ : Σ×Σ→ Z. The longest supported alphabet is the
alphabet of amino acids used in Protein sequence alignment, with a length of 23 characters.
The domain of ρ has 23∗23 = 529 elements, making it a good candidate to be implemented
as a Look Up Table (LUT). Assuming 32-bit score values, the LUT needs less than 1 KiB of
space. The decision was made to place the ρ LUT is shared memory:

scoreMatrix: stores the function ρ as a Look Up Table.

In order for this to work, the Σ characters have to be mapped into the range [0,23] for
protein sequences, and [0,4] for DNA sequences. With this internal representation of the se-
quences, calculating the score of an alignment translates to one Fused-Multiply-Add (FMA)
operation and one shared memory access, as shown in figure 3.3.

ΣDNA = {A,C,T,G} Transform.
======⇒ Σ

′
DNA = {0,1,2,3}

s = A,T,T,C Transform.
======⇒ s′ = 0,2,2,1

t = A,G,C,A Transform.
======⇒ t ′ = 0,3,1,0

ρDNA = {((A,A),5),
((A,C),−2),
((A,T),−4),
...}

Transform.
======⇒

ρ
′
DNA = [5,−2,−4,−4,

−4,5,−4,−1,
−4,−2,5,−3,
−4,−4,−4,5]

ρDNA(T,G) = ρ
′
DNA[2∗ |ΣDNA′|+3] = ρ

′[11] =−3

Figure 3.3: Sequence characters are transformed into an internal representation to make the
scoring function implementable as a Look Up Table.

17

3.3 Concurrent kernel execution
The design of the dynamic programming matrix data structure is henceforth referred to as a
‘kernel’. It was mentioned that the maximum number of rows in a kernel is 1024. In this
section, it is shown how this kernel can be used as a building block to support the alignment
of longer sequences. It is assumed that the 1024×m matrix M fits in global memory; if it
doesn’t, the number of rows can be scaled down until it does.

The first thought that came to mind when trying to align longer sequences is to use the
same kernel to fill in the rows 0..1023, then move on to the rows 1023..2047, and so on,
progressing sequentially. Surprisingly though, there is a degree of parallelism between sub-
sequent kernel invocations, coming from the fact that the matrix is filled using the diagonal
approach. This was noted while implementing the data communication between sequential
kernel invocations. There is a special kind of parallelism called “pipeline parallelism” in the
subsequent kernels - once the first column in the first kernel is finished, the next kernel can
already start, executing concurrently with the first. In other words, once the thisScores di-
agonal of kerneli reaches its maximum length, kerneli+1 can start executing while kerneli is
still computing its later diagonals. Figure 3.4 shows a conceptual view.

kerneli

kerneli+1

kerneli+2

Figure 3.4: Three 2×8 kernels are able to execute concurrently, once the pipeline is
sufficiently filled. Green cells represent work already done, and the black lines represent the

currently executing diagonals.

With each kernel being executed on a dedicated Streaming Processor (SM), multiple SMs
of a GPU can be employed to work on the algorithm, increasing the overall efficiency. Kernels
can be assigned to available SMs in a round robing fashion, for example, in the case of 2 SMs,
once one SM finishes with kerneli, it can be assigned to work on kerneli+2. This scheduling
is done by the CUDA runtime, transparently to the programmer.

In pipeline parallelism there is usually a constant cost associated with filling of the pipeline.
In this case, this cost can be easily approximated. Let k be the number of rows in a kernel (2
in the example from figure 3.4). Assuming unit time for calculating one diagonal, kerneli+1
has to wait k time units before starting its work, kerneli+2 has to wait 2k time units, and so
on. If m is much larger than n (which is sometimes the case in local alignment), then this

18

technique can increase the efficiency of the GPU algorithm significantly. Since there is a
one-to-one correspondence between the number of SMs and number of kernels, GPUs with
more SMs should perform better. The 750M only has only 2 SMs, but newer Nvidia GPUs
have tens of SMs.

Inter-kernel data communication is the core challenge of this approach. kerneli+1 has
to wait for kerneli to send its results before it can start executing. This problem is simpler than
the general problem of data communication between concurrent threads. One-directional
communication is all that is needed. In concurrency theory, this pattern is called a fence or
a barrier. A design decision was made to have a barrier data structure reside in GPU global
memory, where all kernels can query and update it. Because of the weak memory ordering of
the GPU architecture, this is dangerous territory. Care was taken in designing operations on
the data structure to eliminate any determinacy races. Only one kernel writes to a location in
the data structure at a time, while the one-to-one mapping between kernels and SMs ensures
that there is no starvation.

Let columnState be an array with a cell holding a kernelid and score for each column in
the M matrix. This data structure has two operations. For kerneli+1, it must support access to
the result of kerneli, when it is available; and for kerneli it must support storing its result and
removing a barrier:

function GET PREV SCORE(kernelid, columnid)
while columnState[columnid].kernelid 6= kernelid do

wait
end while
return columnState[columnid].score

end function
function SET DONE(kernelid, columnid, newScore)

atomically do
columnState[columnid].score = newScore
columnState[columnid].kernelid = kernelid +1

end atomically
end function

The semantics of the two operations guarantee that only one kernel will have access to the
score of a column state at any given point in time - for any given kernelid (1) GET PREV SCORE()
and SET DONE() are called exactly once; (2) GET PREV SCORE() is always called before
SET DONE().

3.3.1 Discussion
A natural question to ask is “why not use the kernel size launch configuration available in
CUDA to employ multiple SMs, instead of going to all the trouble of using concurrent ker-
nels?”. The main motivation behind the decision to use concurrent kernels was that each
kernel needs to transfer its part of M matrix to the host after it finishes. The limited size of
GPU global memory was the reason behind decomposing the problem into multiple kernels in
the first place. Also, using the launch configuration would not make the problem of commu-
nicating data across SMs go away. It may well be that there is a more elegant or efficient way

19

to handle this problem. One way could be to let CUDA implicitly manage the intermediate
data transfers by using unified CPU and GPU memory. This approach was briefly explored in
the implementation, however, the performance was much poorer compared to using explicit
data transfers, so this avenue was abandoned. It could be argued that the more fine-grained
control over kernel execution that comes with concurrent kernels is worth paying the price of
a little more complexity in the implementation.

20

Chapter 4

Scalable implementation

This chapter describes the implementation of the ideas developed in the design stage in the
form of the alignSequence program. First, the dataflow graph of the program is depicted.
Next, the implementation of the GPU algorithms for global and local alignment is described.
Finally, the implementation of the concurrent kernels idea is explained.

4.1 Program data flow
With the idea of parallelism and the supporting data structures established, a high level
overview of how the data flow through the program is presented. The program starts by
an invocation through the command line:

$./alignSequence
Usage: alignSequence [-p -d -c -g] [--score-matrix <int>]

[--gap-penalty <int>] <file> <file>
-d, --dna - align dna sequences (default)
-p, --protein - align protein sequence
-c, --cpu - use cpu device (default)
-g, --gpu - use gpu device
--global - use global alignment (default)
--local - use local alignment
-s, --score-matrix - next argument is a score matrix file
--gap-penalty - next argument is a gap penalty (default 5)

At a minimum, the user is expected to supply two files with the sequences to be aligned.
If neither of the flags are specified, the default configuration is used. The supplied argu-
ments are passed to parseArguments() where they are parsed and checked for correct-
ness, together with any supplied files. If the arguments are wrong, for example, the sup-
plied sequences use characters not present in the default alphabet, then a suitable error mes-
sage is printed. When the program finds itself in other incorrect states, like running out of
memory for the sequences, then other appropriate error messages are printed. Once parsed
successfully, a Request object is built which contains all the necessary data for an align-
ment, and a Response object which will hold the resulting alignment (see figure 4.1 and the
SequenceAlignment.hpp header file in the code submission).

21

struct Request
{

programArgs deviceType;
programArgs sequenceType;
programArgs alignmentType;
char *textBytes;
uint64_t textNumBytes;
char *patternBytes;
uint64_t patternNumBytes;
const char *alphabet;
int alphabetSize;
int scoreMatrix[...];
int gapPenalty;

};

struct Response
{

char *alignedTextBytes;
char *alignedPatternBytes;
uint64_t numAlignmentBytes;
uint64_t startInAlignedText;
uint64_t startInAlignedPattern;
int score;

};

Figure 4.1: Request and Response objects used internally to pass data to and from the
alignment algorithms (memory allocation and deallocation omitted here).

Both objects are responsible for their allocated memory and will be destroyed once going
out of scope - following the Resource Acquisition Is Initialisation (RAII) technique in C++.
Next, there is a runtime dispatch to fill in the dynamic programming matrix based on the
alignment type (global or local) and on the selected device (CPU or GPU). Once the M
matrix is filled, the traceback algorithm is executed on the CPU. Finally, the aligned sequence
is printed in a structured way, along with some useful information. Figure 4.2 shows an
example output. The high level data flow of the program is summarised in figure 4.3.

$./alignSequence --gpu data/dna/01.txt data/dna/02.txt

1 -ATGAAG-T-T-GTTCGC-CTTACTTTTAATTCTACTCT-CTC-CTCGAG 50
||.||. | | |.|||. ||||.|...|.. || |. |.| | | ||

1 CATAAAACTCTCGGTCGGGCTTAGTACCAGG---AC-CGGCGCAC-C-AG 50

51 ATTCGTC 57
|.| |

51 AGT-G-- 57

Length: 57
Identity: 28/57 (49.1%)
Gaps: 16/57 (28.1%)
Score: 8

Figure 4.2: Example output from the alignSequence program.

22

main
Request
Response

parseArguments
validate input
transform sequences
transform score matrix

prettyAlignmentPrint

alignSequenceCPU
M

alignSequenceGPU
M

fillMatrixNW

fillMatrixSW

cuda fillMatrixNW

cuda fillMatrixSW

traceBackNW
align sequences

traceBackSW
align sequences

arg
uments

Request

Response

Re
qu
es
t

Re
sp

on
se

Request

Response

M

M

M

M

M MResponse

Response

Figure 4.3: High-level data flow of alignSequence. Green boxes represent GPU kernels.

4.2 Needleman-Wunsch (NW) GPU kernel
In this section, the implementation of the NW GPU kernel is discussed. The kernel was
implemented using CUDA C++ and can be found in the alignSequenceGPU.cu file in the
code submission. Pseudocode highlighting the approach taken during the implementation is
shown in Listing 1. The kernel takes data structures and variables described in the Design
chapter as kernel parameters, with their memory handling described shortly. The startRow
and kernelid parameters, together with the columnState data structure make it possible for the
kernel to work on any part of the M matrix, supporting the modularity aimed at in the design
stage. The very first row and column of the recurrence relation follow from the initialisation
and are not computed. There are two for-loops to fill the matrix M with a DIRECTION::LEFT,
DIRECTION::TOP or DIRECTION::DIAG value for each cell, needed for the traceback. The
first loop deals with the case when the diagonal is growing, and the second with the case
when it is shrinking. Having two loops made it easier to implement the indexing into the
three shared memory score buffers, minimising the number of thread divergences inside of a
warp.

The kernel makes use of helper functions: ping pong buffers(), get prev score(),

23

set done(), and choose direction NW(), all of which have been described in the previ-
ous chapter, and are not repeated here. It is worth noting that the functions used for data
communication between kernels are executed just on one thread - a common pattern when
implementing any kind of concurrency on the GPU.

Listing 1 fillMatrixNW

// Initialisation. Set up shared memory buffers, copy score matrix...
// Each thread gets one row (one pattern letter).
const char patternByte = patternBytes[tid + startRow - 1];

/* First half of matrix filling */
int fromLeft = 0, fromDiag = 0, fromTop = 0, fromPrevKernel = 0, diagonalSize = 0;
for (int i_text = 1; i_text < numCols; ++i_text)
{

ping pong buffers(thisScores, prevScores, prevPrevScores);

diagonalSize = min(diagonalSize + 1, numRows);
const int idxInRow = i_text - tid;

// Thread 0 (= row 0) gets score from the previous kernel.
if (tid == 0 && kernelId > 0)

fromPrevKernel = get prev score(colState, i_text, kernelId);
syncthreads();

if (tid < diagonalSize)
{

fromLeft = prevScores[tid];
fromDiag = prevPrecScores[tid - 1];
fromTop = (tid == 0) ? fromPrevKernel : prevScores[tid - 1];

const char textByte = textBytes[idxInRow - 1];
const int scoreMatrixIdx = textByte * alphabetSize + patternByte;

// Recurrence relation returning score and selected direction.
auto scoreDirPair = choose direction NW(fromLeft, fromTop, fromDiag, gapPenalty,

scoreMatrix[scoreMatrixIdx]);
thisScores[tid] = scoreDirPair.first;
M[tid*numCols + idxInRow] = scoreDirPair.second;

// Last row in kernel updates the columnState data structure.
if ((tid + startRow) == endRow)

set done(columnState, idxInRow, scoreDirPair.first, kernelId);
}

}

/* Second half of matrix filling */
for (int i_pattern = 1; i_pattern < numRows; ++i_pattern)

// Fill the rest of M, with adjusted indexing and no get_prev_score().

// Matrix M is filled. The score is at columnState[numCols - 1].score

24

4.3 Smith-Waterman (SW) GPU kernel
The implementation of the SW GPU kernel (also found in alignSequenceGPU.cu) is similar
to the NW kernel, with two main differences. Firstly, choose direction NW() has changed
to choose direction SW(), to handle the different recurrence relation. Secondly, an addi-
tional DIRECTION::STOP value was introduced which will be stored in M for every cell with
a 0 score. Thirdly, the kernel has to keep track of the maximum score and the corresponding
index in M. The score of a local alignment is not guaranteed to be in the columnState data
structure, like in the NW kernel. To keep track of the best score, each thread within the kernel
has a thisBestScore and thisBestScoreIdx local variable. Each time a thread calculates the
score of a cell, it updates both of these variables if the newly calculated score is higher than
its thisBestScore. Thus, at the end of the kernel, every thread will hold the maximum score
it has seen, and the index within M of that score needed for the traceback. The last step is to
choose the maximum score out of every active thread - a set of values needs to be reduced to
one.

Reductions are a common pattern in parallel programming. The max-reduction at the
end of the SW kernel is guaranteed to be within a single SM and involve no more than 1024
threads. Any of the three score buffers can be re-used to store the thisBestScore values for
each thread in shared memory. Once in addressable memory, a simple tree reduction can be
performed (shown in Listing 2). At the end, each thread can check if the maximum score
is equal to its score, and the first thread to succeed this test will set the index within M
corresponding to that score. There can be several local alignments and the GPU kernel will
choose one non-deterministically.

Listing 2 max reduce

/// Given an array "values", compute the maximum of of the N first items,
/// and store it in values[0]. Example:
/// [2, 0, 3, 1, 0]
/// [2, -, 3, -, 0]
/// [3, -, -, -, 0]
/// [3, -, -, -, -]
__device__ __forceinline__ void max reduce(int *values, const int N)
{

const int tid = threadIdx.x;

// Tree reduction with log2 levels.
for (int pow2 = 1; pow2 < N; pow2 *= 2)
{

// Only threads at pow2 indexes do work.
if ((tid & pow2) == 0 && (tid + pow2) < N)

values[tid] = max(values[tid], values[tid + pow2]);

syncthreads();
}

}

25

4.4 Concurrent kernel orchestration
CUDA kernels are invoked by the host. By default, subsequent kernel invocations are block-
ing; executing sequentially. CUDA streams, which are nothing else than command queues,
can be used to launch concurrent kernels and to overlap GPU data transfer with computa-
tion. Figure 4.4 visualises the difference in the execution timeline between sequential and
concurrent kernels.

(a) A single SM works on a sequence of kernels.

(b) Two SMs work on a sequence of kernels concurrently.

Figure 4.4: Output from the Nvidia Visual Profiler tool, showing the timeline of a sequential
and concurrent kernel execution.

A CUDA stream has to be created and managed as any other resource on the GPU. In the
implementation, a initMemory() function was created whose responsibility it is to prepare
the GPU resources for the kernel launch, including CUDA streams. This involves:

• Querying the GPU for the number of SMs and the size of the global memory. These
parameters determine how many kernels can be launched concurrently, and how big
they can be.

• Setting the number and dimensions of kernels, and the number of CUDA streams.

• Allocating GPU resources for the required data structures and CUDA streams.

• Transferring the sequences and scoring matrix to the GPU.

Dually, there exist a cleanUp() function which destroys the created resources at the end of
the kernel, or in case of any error.

Once the number of kernels, CUDA streams and other parameters are known, the kernels
can be launches as in Listing 3. The number of CUDA streams is equal to the number of SMs
on the GPU. It is quite likely that the number of kernels needed is larger than the number of

26

CUDA streams. In this case, a single CUDA stream would get multiple kernels to work on,
in a round-robin scheduling fashion.

Within each stream, after a kernel has finished, the calculated direction in the device M
matrix are transferred back to the host by the same stream. This ensures that the stream
doesn’t start the next kernel (potentially overriding data) until the transfer has finished. Ker-
nels scheduled on other streams are free to execute concurrently with the data transfer, thanks
to the Direct Access Memory (DMA) engines on the GPU. As discussed in the Background
chapter, the memory address written to by the DMA engine must be physical, not virtual.
CUDA provides an API to allocate pinned physical memory on the host, which is taken care
of in the initMemory() function.

An important thing to note from Listing 3 is that each kernel gets a unique kernelid value,
needed for the get prev score() and set done() functions, described in the Design chap-
ter.

Listing 3 Concurrent kernel orchestration

for (int i_kernel=0; i_kernel < numKernels; ++i_kernel)
{

// Round-robin scheduling for CUDA streams.
auto i_stream = i_kernel % numCuStreams;
currCuStream = cuStreams[i_stream];
// Kernels are enumerated from 0 to numKernels-1.
kernel<<<1, numThreads, sharedMemSize, currCuStream>>> (.. i_kernel, d_M[i_stream]);
// Each kernel transfers its results back to the host,
// while other kernels are still executing.
cudaMemcpyAsync(curr_h_M, d_M[i_stream], numThreads*numCols, ..);

}

27

Chapter 5

Testing & Evaluation

In this chapter, the correctness and performance tests used in the project are described. The
first section goes over the correctness verification of the alignSequence program. Next, the
methodology behind the performance tests is explained and the results are presented. At the
end, the concurrent kernel approach is evaluated and discussed.

5.1 Correctness verification
The project, especially in the early stages of the implementation, followed a Test Driven
Development (TDD) methodology. Before implementing a given function, a test case was
written specifying the expected behaviour. This methodology helped to stay on track during
the implementation by breaking the program down into individual pieces, which could be
tested in separation.

The Catch2 testing framework was used to implement the unit and functional tests [6]. It
is a single header lightweight library, providing several macros for the usual unit test types.
Listing 4 shows an example unit test, written using Catch2, which verifies that a score matrix
file was parsed correctly.

Listing 4 Example unit test

TEST CASE("parseScoreMatrixFile")
{

SequenceAlignment::Request request;
request.alphabet = SequenceAlignment::DNA_ALPHABET;
request.alphabetSize = SequenceAlignment::NUM_DNA_CHARS;
parseScoreMatrixFile("scoreMatrices/dna/blast.txt",

request.alphabetSize, request.scoreMatrix);

CHECK(getScore('A', 'A', request.alphabet,
request.alphabetSize, request.scoreMatrix) == 5);

CHECK(getScore('G', 'T', request.alphabet,
request.alphabetSize, request.scoreMatrix) == -4);

// ...
}

28

The same framework was used for the functional testing of the complete alignSequence
program. The first stage of the project was to develop a CPU implementation of the NW and
SW algorithms. The CPU version was tested against the EMBL-EBI online toolkit suite1.
Once the CPU version was working correctly, the GPU version was tested against that.

In the submission, there are 20 protein and 20 DNA sequences of varying sizes. These
data comes from GenBank2, which is a publicly accessible database of DNA and protein
sequences. The test suite aligns every possible pair of sequences on the CPU and GPU and
compares the alignment score and aligned sequences. This is done both for local and global
alignment, with the caveat that in local alignment only the score is checked since there can be
multiple optimal local alignments and the GPU algorithm chooses one non-deterministically.
Overall, there are over a 1000 checks performed. The test suite was ran on three Nvida GPUs,
each from a different generation, and none reported any errors. Access to high-end Nvidia
GPU cards was possible through the University of Liverpool Barkla compute nodes3. The
functional and performance tests described in this chapter can be easily repeated if one has
access to Barkla; there are only two commands needed to run the test or benchmark suite.
The steps to do that are described in the README, which is available in the code submission,
and is also appended to this dissertation for convenience (appendix B).

Figure 5.1: Test suite output on a Barkla compute node.

5.2 Performance results
For evaluating the performance of the NW and SW implementations, three types of perfor-
mance tests were performed. The timer resolution used in the tests is in microseconds, but
timing results are reported in seconds. Data used in these benchmarks were randomly sam-
pled from the protein alphabet. This is justified by the fact that there are no data-dependent
steps in the NW and SW recurrence relations. The traceback step of the algorithms is data-
dependent, however, it is not the main point of the evaluation.

1https://www.ebi.ac.uk/Tools/psa/
2https://www.ncbi.nlm.nih.gov/genbank/
3https://www.liverpool.ac.uk/csd/advanced-research-computing/facilities/

high-performance-computing/

29

https://www.ebi.ac.uk/Tools/psa/
https://www.ncbi.nlm.nih.gov/genbank/
https://www.liverpool.ac.uk/csd/advanced-research-computing/facilities/high-performance-computing/
https://www.liverpool.ac.uk/csd/advanced-research-computing/facilities/high-performance-computing/

In addition to performance results from various classes of GPUs, the results of a reference
CPU implementation running on a single thread of an Intel i7-4850HQ mobile CPU are
presented. They are compared to results from an equivalent class mobile GPU (both chips
would typically be found in consumer laptops from around 2013). It is not an objective
comparison between the two technologies - the reference CPU implementation from this
project was not as highly tuned as the GPU implementation, it is not using the full potential
of a single core with all the SIMD units, and it is only using one of the four available cores.
The sole purpose of the comparison is to give an indication of the level of improvement one
might expect when running a data parallel kernel on a CPU and GPU. Results from two other
GPUs are also reported: the Nvidia Quadro P4000, which is a mid-range card with 14 SMs,
and the Nvidia Tesla V100, which is a high end card with 80 SMs. More detail about all these
chips and the experimental setup can be found appendix A. The three benchmark types are
now described in more detail.

Throughput of the filling out of the matrix M is measured in Millions of Cell Updates
Per Second (MCUPS). Traceback time is not included. The result is obtained by dividing the
number of cells in the M matrix, divided by the measured time taken to fill the matrix. Thus,
the throughput results are equivalent to measuring the latency of filing out the matrix, without
traceback. For the GPU implementation, the timer is started once all data is transferred to
the device, and is stopped once all results are transferred back to the host. The same test
configuration is ran five times and the best result is selected.

Figure 5.2 shows the results. In global alignment, the two input sequences have equal
length, whereas in local alignment the second sequence is fixed at 32k characters. The NW
results show that the throughout of the GPU cards grows as more data is available. The CPU
implementation, on the other hand, is not able to scale its throughput with more data - its
peak is 49 MCUPS for all sequence lengths. The 750M card reaches peak throughput of
347 MCUPS once sequences have more than 4000 characters. The speedup graph shows
that the GPU version is up to 8x faster on sufficiently long sequence inputs, compared to the
CPU version. For sequences shorter than 512 characters, the GPU cannot achieve a higher
throughput than the CPU. The other GPUs continue to scale up their throughput beyond that
of the 750M, with the best NW throughput result of 9724 MCUPS reported on the Tesla card
for a 32768× 32768 sequence input. Of interest is the drop in performance for the Quadro
and Tesla cards for longer sequences. This point will come back into discussion in the next
section.

The throughput results improve for the SW algorithm. This is because the GPU imple-
mentation performs better on input instances where one sequence is longer than the other.
Why exactly that is will also be explained in the next section. When comparing the mobile
chips, the GPU implementation shows up to a 12x improvement over the CPU. The added
speedup comes from the fact that the CPU implementation achieves less throughput in the
SW algorithm. The higher end GPUs report higher throughput for SW, with the best result of
14,354 MCUPS achieved when aligning a 16384×32768 sequence pair on a Tesla card.

30

25
6

51
2

10
20

20
50

41
00

81
90

16
40

0
32

80
0

65
50

0

50

500

5,000

15,000

Sequences Length
(log scale)

M
C

U
PS

(l
og

sc
al

e)
GPU (Tesla V100)

GPU (Quadro P4000)
GPU (750M)

CPU

(a) Throughput (NW)
25

6
51

2
10

20
20

50
41

00
81

90
16

40
0

32
80

0
65

50
0

1
2

4

6

8

10

12

Sequences Length
(log scale)

Sp
ee

du
p

GPU (750M) vs CPU

(b) Speedup (NW)

25
6

51
2

10
20

20
50

41
00

81
90

16
40

0

32
80

0

50

500

5,000

15,000

1st Sequence Length
(log scale)

M
C

U
PS

(l
og

sc
al

e)

(c) Throughput (SW)

25
6

51
2

10
20

20
50

41
00

81
90

16
40

0

32
80

0
1
2

4

6

8

10

12

1st Sequence Length
(log scale)

Sp
ee

du
p

(d) Speedup (SW)

Figure 5.2: Throughput results for filling out the matrix M in NW (top) and SW (bottom). In
NW, sequences are of equal length. In SW, the second sequence length is fixed at 32k.

End-to-End latency of the alignSequence program is the combined time to solve the
recurrence relation and to perform the traceback. The timer is started before passing the
Request object to the alignSequenceGPU or alignSequenceCPU function, and it is stopped

31

once the Response object has been fully filled with the alignment score and resulting align-
ment sequences. The GPU speedup over the CPU is expected to drop in this benchmark,
which is confirmed by the results in figure 5.3.

25
6

51
2

10
20

20
50

41
00

81
90

16
40

0
32

80
0

65
50

0

0.01

0.1

1

10

100

Sequences Length
(log scale)

Se
co

nd
s

(l
og

sc
al

e)

GPU (Tesla V100)
GPU (Quadro P4000)

GPU (750M)
CPU

(a) Latency (NW)

25
6

51
2

10
20

20
50

41
00

81
90

16
40

0
32

80
0

65
50

0

1
2

4

6

8

10

12

Sequences Length
(log scale)

Sp
ee

du
p

GPU (750M) vs CPU

(b) Speedup (NW)

25
6

51
2

10
20

20
50

41
00

81
90

16
40

0

32
80

0

0.1

1

10

100

1st Sequence Length
(log scale)

M
C

U
PS

(l
og

sc
al

e)

(c) Latency (SW)

25
6

51
2

10
20

20
50

41
00

81
90

16
40

0

32
80

0

1
2

4

6

8

10

12

1st Sequence Length (log scale)

Sp
ee

du
p

(d) Speedup (SW)

Figure 5.3: End-to-End alignSequence latency results for NW (top) and SW (bottom). In
NW, sequences are of equal length. In SW, the second sequence length is fixed at 32k.

32

The NW GPU speedup drops from a peak of 8x to 7x, while the SW speedup drops from a
peak of 12x to 10.5x. On average, the time of the matrix filling function on the GPU takes
up around 68% of the total runtime of the alignSequence program, while the CPU matrix
filling function takes up more than 95% of the runtime. These data show that, consistent with
Amdahl’s law, the maximum possible speedup is limited by the sequential traceback part of
the algorithm. This is the motivation for the next benchmark.

Batch processing latency measures the end-to-end latency of the alignSequence pro-
gram when aligning multiple sequences in succession. It simulates a server-client model
where requests are submitted to a work queue and worked on by the available CPU and GPU
resources. The motivation of this benchmark is to show another benefit of offloading the
matrix filling function to the GPU. Namely, the CPU can work on the traceback and the
GPU can work on the recurrence ralation at the same time, if multiple sequences need to be
aligned in succession; the GPU can immediately start processing the next input, while the
CPU is performing the traceback. Thus, the overall latency of the system should decrease.
Figure 5.4 demonstrates the validity of this approach. Here, the length of the input is fixed at
8192×8192. The results show that the speedup of using both a CPU and GPU over just using
a CPU grows from around 5x for a single sequence up to 7x once more than four sequences
are aligned in batch - a 30% speedup. Recalling that the traceback takes up around 32%
of the program runtime on average, this is almost completely offset in this batch processing
scenario. This shows the benefit of a CPU and GPU co-execution model for a problem which
consists of both parallel and sequential regions.

12 4 8 16 32
1

10

30

60

Number of sequences

Ti
m

e
(s

ec
on

ds
)

GPU (750M)
CPU-NW

(a) Latency

12 4 8 16 32

2

4

6

8

Number of sequences

Sp
ee

du
p

GPU (750M) vs CPU

(b) Speedup

Figure 5.4: End-to-End latency of aligning multiple sequences in batch using NW. The
length of the sequences is fixed at 8192×8192.

33

5.3 Concurrent kernel evaluation
It is of interest to study the possible speedup of employing more SMs in the filling out of the
M matrix. Figure 5.5 shows how the matrix is divided between concurrent kernels.

r
k

r
r− r

k

r c− r

c

Figure 5.5: Domain decomposition of an r×c matrix into k concurrently executing kernels.
The red trapezoid represents the area of the matrix needed to be filled before all kernels can

execute concurrently. The green area can be worked on by all kernels.

The red area represents work needed to be done by the first kernel, before all kernels are able
to run concurrently; the green area can be worked on by all kernels. With this decomposition,
a simplistic speedup prediction can be made based on the geometry of the M matrix. Let
t1 = rc be the time needed to fill the whole matrix using one kernel, where r, c stand for the
number of rows and columns, respectively. Let tk be the time needed to fill the matrix using
k kernels. It can be approximated by adding the area of the red trapezoid to the area of the
green trapezoid divided by the number of kernels:

tk =
r
k

r+ r− r
k

2
+

r c+c−r
2

k
=

r
k

2c− r− r
k

2

The predicted speedup of using k concurrent kernels is then equal to t1/tk. Figure 5.6c shows
that the expected speedup of using more kernels is almost linear in the number of kernels, at
least for inputs where one sequence is much longer than the other. This prediction is rather
simplistic, ignoring any features of the GPU which would affect the actual performance.
What it does reveal is that as the c/r ratio increases, the speedup of using more kernels also
increases.

A separate benchmark was constructed to measure the actual speedup of using more ker-
nels. A problem size was fixed, and the number of concurrent kernel was varied (1, 2, 4, 8,
16, 32, 40, 64 or 80 kernels). This benchmark was ran on a Tesla V100 card, which has 80
SMs. Figure 5.6 shows the results of this experiment for various sequence lengths. The re-
sults show that, as the problem size grows, the benefit of using more kernels increases. Also,

34

where one sequence is much longer than the second, the improvement is higher and more
consistent, confirming the insight from the speedup prediction. The error between predicted
and actual speedup is within 15% up until using 16 kernels, and increases sharply after that.
The most important thing to note from the results is that the performance scaling slows when
going from 16 to 32 kernels, and even drops in some cases once going beyond 32 kernels.

1 2 4 8 16 32 80

1,000

4,000

7,000

9,000

Kernels
(log scale)

M
C

U
PS

(a) Throughput

1 2 4 8 16 32 80

1

2

4

8

16

32

64

Kernels
(log scale)

Sp
ee

du
p

(l
og

sc
al

e)

(b) Speedup

1 2 4 8 16 32 80

1
2

4

8
16

32
64

Kernels
(log scale)

Pr
ed

ic
te

d
sp

ee
du

p
(l

og
sc

al
e)

4096 × 4096
65536 × 65536
4096 × 65536
16384 × 65536

(c) Predicted speedup

Figure 5.6: Throughput scaling with increased number of concurrently executing kernels on
an Nvidia Tesla V100 GPU (80 SMs). Throughput is measured in Millions of Cell Updates

Per Second (MCUPS).

35

5.3.1 Discussion
This project has not investigated deeply enough why using more than 16 or 32 concurrent
kernels doesn’t give the predicted speedup. What follows are pure speculations, not backed
up by data. The first suspected culprit is the memory sub-system. Concurrent kernels are
synchronised via global memory, and the increased number of memory accesses might cause
significant delay. Another bottleneck might be the host-device interconnect. As more ker-
nels run concurrently, the number of data transfers of the filled out portion of the M matrix
increases. The PCIe bus bandwidth is far away from being saturated; the problem is the large
number of requests to serve.

Being able to efficiently use more than 32 SMs would be the next part of this project,
had there be more time. For example, in newer Nvidia cards there is the ability to start
CUDA kernels from another CUDA kernel (dubbed “dynamic parallelism” by Nvidia). This
might decrease the number of memory requests used to synchronise between kernels. A
more sophisticated strategy to transfer data back to the host would also probably help. These
questions would be an interesting thread of future work.

36

Chapter 6

Conclusion

This chapter looks at how well the aims and objectives of this project have been met. The
outcomes of of the project are related to the requirements for course accreditation from the
Chartered Institute for IT. Finally, a critical self-reflection on the project is performed, to-
gether with possible future work.

6.1 Aims & Objectives
In the Introduction, the main goal of this project was specified as “accelerating the Needleman-
Wunsch and Smith-Waterman sequence alignment algorithms on the GPU, with the focus
on enabling the alignment of long sequences”. It can be concluded that this goal has been
achieved. A breakdown of the aims and objectives needed to achieve this goal and where
they were achieved in this project follows.

Aims:

• “Understanding the problem of sequence alignment in the context of bioinformatics”
was achieved during the research phase of the project. Evidence for that is the Back-
ground chapter, where global and local sequence alignment formally defined. Other
alignment types and heuristic techniques were also explored during the research phase.

• “Understanding the GPU architecture, the underlying programming model and gaining
practical experience in accelerating a workload using the GPU”
was also achieved in the initial stage of the project through learning sessions with the
project supervisor, and through individual research and exercises. Evidence for that
can be found in the discussion of the GPU architecture and programming model in
the Background chapter. The learning and practise continued throughout the project.
Admittedly, this project only scratched the surface of GPGPU programming but it was
a good introduction and building block to expand knowledge in the future.

• “Implementing the global sequence alignment algorithm on the GPU”
was achieved as witnessed by the Design and Implementation chapters. The optional
aim of implementing local alignment was also achieved.

37

• Evaluation and understanding of the performance improvement of using a GPU
was achieved in the Testing & Evaluation part of this dissertation. The improvement of
using a GPU over a CPU was discussed in several scenarios. The predicted and actual
speedup of using multiple concurrent GPU kernels was also presented.

• “Allowing to align as long sequences as possible”
was achieved through a modular design discussed in the Design chapter, and an im-
plementation using concurrently executing kernels in the Implementation chapter. The
limit on the length of the sequences is imposed by the host memory size, not the much
smaller memory size of the GPU. For example, on the 750M system with 16 GB host
and 2 GB device memory the maximum input size of the two sequences increases from
around 40000 to 120000.

Objectives:

• “Implementing a global sequence alignment algorithm on the CPU”
was one of the first activities of the project. Altough not discussed in detail in this
dissertation, the CPU implementation can be found in the alignSequenceCPU.cpp
file in the code submission. Performance results from the CPU version were given in
the Testing & Evaluation chapter.

• “Setting up a test framework, including test data generation and performance measure-
ment”
was achieved in the tests.cu file in the code submission. Unit and functional tests
expressed in an industry grade testing framework were used. Evidence and results are
given in the Testing & Evaluation chapter.

• “Designing a global sequence alignment algorithm implementation for the GPU, ex-
ploiting the unique features of the architecture”
was achieved in the Design chapter, with the thinking process and ideas tried discussed.
The relevant data structures and operations on them were described, with a mapping to
the GPU architecture.

• “Implementing the designed algorithm on the GPU”
was achieved in the Implementation chapter. The optional goal of implementing a local
alignment algorithm was also achieved.

• “Running experiments comparing the GPU and CPU”
was achieved in the benchmarks.cu file in the code submission. Evidence and results
were given in the Testing & Evaluation chapter, testing the implementation in multiple
scenarios.

• “Using concurrently executing kernels to employ all GPU resources in aligning longer
sequences”
was achieved, with the evidence in the Design and Implementation chapters.

• “Evaluation of the performance improvement and scalability of using concurrent GPU
kernels”

38

was achieved in the last section of the Testing & Evaluation chapter. The conclusions
behind the evaluation results from this step were interesting but incomplete. This ob-
jective was added during the course of the project, and it could be expanded on as part
of future work.

6.2 BCS Criteria
The British Computer Society (BCS) Chartered Institute for IT expects several outcomes
from a final year dissertation in order for the degree to be accredited by the organisation.
These were met in the course of this project. How and where is listed below

• “An ability to apply practical and analytical skills gained during the degree programme”
was demonstrated in the design, implementation and evaluation stage of this project.
Practical computer programming skills were needed to finish the implementation stage;
analytical skills were needed in the design of the implementation and in the evaluation.

• “Innovation and/or creativity”
were demonstrated by using concurrent GPU kernels. Creativity was shown in design-
ing this approach. Calling the use of concurrently executing kernels “innovative” would
be an overstatement but it was an unconventional way of approaching the problem and
the synchronising code between kernels was objectively original.

• “Synthesis of information, ideas and practices to provide a quality solution together
with an evaluation of that solution”
was demonstrated through the learning and application of GPGPU programming. This
was a novel concept and had first to be learned. Information from various sources was
synthesised and adapted to meet the goal of this project. The solution was of sufficient
quality and was evaluated objectively.

• “That the project meets a real need in a wider context”
can be argued by the prevalence of sequence alignment tools in bioinformatics. This
was discussed in the Introduction chapter, which goes into more detail behind the mo-
tivation for accelerating sequence alignment on the GPU.

• “An ability to self-manage a significant piece of work”
was demonstrated by adhering to the project proposal throughout the months of work
on the project. Additional aims and objectives were added during the project, which
had to be seen through to completion in order to not interfere with the original work-
load. This was a significant piece of work, which had to be well managed, especially
with the added workload of other University modules.

• “Critical self-evaluation of the process”
has been performed in this dissertation (see next section).

39

6.3 Self-Reflection & Future Work
In my opinion, this project has been a success. My main goal was to learn about the GPU
architecture and gain practical experience in accelerating a non-trivial piece of code. This has
mostly been achieved. The learning of GPGPU programming started with tutorial sessions
with my supervisor and has continued throughout the project where I was able to apply the
acquired knowledge in practice.

The aims and objectives detailed in the project proposal were followed through, with
additional objectives added during the project. Managing these has improved my ability
to self-manage and plan ahead. Being able to break up complex and long-term tasks into
manageable pieces is a useful skill to have in life, and this project has taught me a thing or
two about that.

As is expected in a project spanning several months, not everything went to plan. The
predicted time spent on individual objectives from the project proposal timeline were some-
times quite different from reality. Especially the testing and evaluation stage took longer than
I had expected. The performance tests spotlighted several places where the implementation
could be improved, which increased the time needed to complete this objective. It has taught
me to integrate at least some performance tests with the implementation stage in the future.
Another unexpected lesson was the gulf between a working prototype and a complete piece
of work, such as this dissertation. The work needed to gather results, analyse them, draw
conclusions and write them up was sometimes daunting, but rewarding in the end.

There are several pieces of work in this project that could be improved or expanded on.
Firstly, there is no need to use a full byte to store directions in the M matrix, which can
only take four possible values. Directions from four cells could be packed into a single byte,
decreasing the space requirement by 4x for a small price of a compression and decompression
computation. The traceback part of the algorithm was also not particularly well optimised,
and it consumes up to 30% of the program runtime for some input sizes. Improving this step
would be a focus of future work. Other improvements would include adding more features
that the users of the software would be interested in. The ability to use an affine gap penalty
is common in alignment tools, penalising the opening of a gap and extending it differently.
This wouldn’t be hard to add to the existing implementation.

The most interesting thing for me to work on further would be improving the concurrent
kernel performance scaling beyond 16 or 32 kernels. First, I would try to pinpoint what ex-
actly is causing the performance scaling degradation at that point. This information would
then drive the design of a workaround, or even a change in the core design of the implemen-
tation.

In summary, the project was a great opportunity to apply the knowledge learned during my
whole degree. It has taught me several lessons which could only be learned when managing
a larger piece of work. I am left satisfied with the results and encouraged for further study in
the area of computer architecture and software performance engineering.

40

Bibliography

[1] Jade Alglave et al. “GPU Concurrency: Weak Behaviours and Programming Assump-
tions”. In: Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems. ASPLOS ’15. Istanbul,
Turkey: Association for Computing Machinery, 2015, pp. 577–591. ISBN: 9781450328357.
DOI: 10.1145/2694344.2694391. URL: https://doi.org/10.1145/2694344.
2694391.

[2] Christiam Camacho et al. “BLAST+: architecture and applications”. In: BMC bioin-
formatics 10.1 (2009), pp. 1–9.

[3] Miguel Carneiro et al. “A loss-of-function mutation in RORB disrupts saltatorial lo-
comotion in rabbits”. eng. In: PLoS genetics 17.3 (Mar. 2021). PGENETICS-D-20-
01498[PII], e1009429–e1009429. ISSN: 1553-7404. DOI: 10.1371/journal.pgen.
1009429. URL: https://doi.org/10.1371/journal.pgen.1009429.

[4] Thomas Carroll. Graphics Processing Units: Abstract Modelling and Applications in
Bioinformatics. University of Liverpool, 2020. URL: https://books.google.co.
uk/books?id=KqLmzQEACAAJ.

[5] Thomas Carroll, Jude-Thaddeus Ojiaku, and Prudence W. H. Wong. “Semiglobal Se-
quence Alignment with Gaps using GPU”. In: IEEE/ACM Transactions on Compu-
tational Biology and Bioinformatics PP (Apr. 2019), pp. 1–1. DOI: 10.1109/TCBB.
2019.2914105.

[6] Catchorg. catchorg/Catch2. URL: https://github.com/catchorg/Catch2/tree/
v2.x.

[7] CUDA C++ Programming Guide. URL: https://docs.nvidia.com/cuda/cuda-
c-programming-guide/.

[8] Ulrich Drepper. What Every Programmer Should Know About Memory. 2007.

[9] GenBank Overview. URL: https://www.ncbi.nlm.nih.gov/genbank/.

[10] Yongchao Liu, Adrianto Wirawan, and Bertil Schmidt. “CUDASW++ 3.0: accelerating
Smith-Waterman protein database search by coupling CPU and GPU SIMD instruc-
tions”. In: BMC bioinformatics 14 (Apr. 2013), p. 117. DOI: 10.1186/1471-2105-
14-117.

[11] Fábio Madeira et al. “The EMBL-EBI search and sequence analysis tools APIs in
2019”. In: Nucleic acids research 47.W1 (July 2019), W636–W641. ISSN: 0305-1048.
DOI: 10.1093/nar/gkz268. URL: https://europepmc.org/articles/PMC6602479.

41

https://doi.org/10.1145/2694344.2694391
https://doi.org/10.1145/2694344.2694391
https://doi.org/10.1145/2694344.2694391
https://doi.org/10.1371/journal.pgen.1009429
https://doi.org/10.1371/journal.pgen.1009429
https://doi.org/10.1371/journal.pgen.1009429
https://books.google.co.uk/books?id=KqLmzQEACAAJ
https://books.google.co.uk/books?id=KqLmzQEACAAJ
https://doi.org/10.1109/TCBB.2019.2914105
https://doi.org/10.1109/TCBB.2019.2914105
https://github.com/catchorg/Catch2/tree/v2.x
https://github.com/catchorg/Catch2/tree/v2.x
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://www.ncbi.nlm.nih.gov/genbank/
https://doi.org/10.1186/1471-2105-14-117
https://doi.org/10.1186/1471-2105-14-117
https://doi.org/10.1093/nar/gkz268
https://europepmc.org/articles/PMC6602479

[12] D.W. Mount and Cold Spring Harbor Laboratory. Press. Bioinformatics: Sequence and
Genome Analysis. Cold Spring Harbor Laboratory Series. Cold Spring Harbor Labo-
ratory Press, 2004. ISBN: 9780879697129.

[13] Saul B. Needleman and Christian D. Wunsch. “A general method applicable to the
search for similarities in the amino acid sequence of two proteins”. English (US). In:
Journal of Molecular Biology 48.3 (Mar. 1970), pp. 443–453. ISSN: 0022-2836. DOI:
10.1016/0022-2836(70)90057-4.

[14] William R Pearson and David J Lipman. “Improved tools for biological sequence com-
parison”. In: Proceedings of the National Academy of Sciences 85.8 (1988), pp. 2444–
2448.

[15] Ranjit Sah et al. “Complete Genome Sequence of a 2019 Novel Coronavirus (SARS-
CoV-2) Strain Isolated in Nepal”. In: Microbiology Resource Announcements 9.11
(2020). Ed. by Simon Roux. DOI: 10.1128/MRA.00169-20. eprint: https://mra.
asm.org/content/9/11/e00169-20.full.pdf. URL: https://mra.asm.org/
content/9/11/e00169-20.

[16] D. B. Skillicorn. “A taxonomy for computer architectures”. In: Computer 21.11 (1988),
pp. 46–57. DOI: 10.1109/2.86786.

[17] T.F. Smith and M.S. Waterman. “Identification of common molecular subsequences”.
In: Journal of Molecular Biology 147.1 (1981), pp. 195–197. ISSN: 0022-2836. DOI:
https://doi.org/10.1016/0022- 2836(81)90087- 5. URL: http://www.
sciencedirect.com/science/article/pii/0022283681900875.

[18] Panagiotis D. Vouzis and Nikolaos V. Sahinidis. “GPU-BLAST: using graphics proces-
sors to accelerate protein sequence alignment”. In: Bioinformatics 27.2 (Nov. 2010),
pp. 182–188. ISSN: 1367-4803. DOI: 10.1093/bioinformatics/btq644. eprint:
https://academic.oup.com/bioinformatics/article- pdf/27/2/182/
6688171/btq644.pdf. URL: https://doi.org/10.1093/bioinformatics/
btq644.

[19] S. Xiao and W. Feng. “Inter-block GPU communication via fast barrier synchroniza-
tion”. In: 2010 IEEE International Symposium on Parallel Distributed Processing
(IPDPS). 2010, pp. 1–12. DOI: 10.1109/IPDPS.2010.5470477.

42

https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1128/MRA.00169-20
https://mra.asm.org/content/9/11/e00169-20.full.pdf
https://mra.asm.org/content/9/11/e00169-20.full.pdf
https://mra.asm.org/content/9/11/e00169-20
https://mra.asm.org/content/9/11/e00169-20
https://doi.org/10.1109/2.86786
https://doi.org/https://doi.org/10.1016/0022-2836(81)90087-5
http://www.sciencedirect.com/science/article/pii/0022283681900875
http://www.sciencedirect.com/science/article/pii/0022283681900875
https://doi.org/10.1093/bioinformatics/btq644
https://academic.oup.com/bioinformatics/article-pdf/27/2/182/6688171/btq644.pdf
https://academic.oup.com/bioinformatics/article-pdf/27/2/182/6688171/btq644.pdf
https://doi.org/10.1093/bioinformatics/btq644
https://doi.org/10.1093/bioinformatics/btq644
https://doi.org/10.1109/IPDPS.2010.5470477

Appendix A

Experimental setup

This project used three types of machine for performance testing: (1) a mobile laptop, (2) a
visualisation node on the University of Liverpool compute cluster “Barkla”, and (3) a com-
pute node on Barkla. The details of these machines are given below.

Nvidia GT 750M
@ 0.93 GHz

Nvidia Quadro P4000
@ 1.79 GHz

Nvidia Tesla V100
@ 1.31 GHz

Architecture Kepler Pascal Volta
GPU memory 2 GB 8 GB 16 GB

SMs 2 14 80
CUDA cores

per SM
192 128 64

CUDA cores
total

384 1792 5120

CPU
Intel i7-4850HQ

@ 2.30 GHz
Intel Xeon Gold 6138

@ 2.00 GHz
Intel Xeon Gold 5118

@ 2.50 GHz
Host memory 16 GB 394 GB 394 GB

OS MacOS 10.13 CentOS 7.9 CentOS 7.9

43

Appendix B

sequence-alignment-gpu readme

Run on Barkla GPU visualisation nodes (no prerequisites required)

1. Get code base:
tar -xf ˜sgrszafa/sequence-alignment-gpu.tgz

2. Load Cuda and a C compiler:
module load libs/nvidia-cuda/10.1.168/bin
module load compilers/gcc/8.3.0

3. Run:
// Will run on Nvidia Quadro P4000
./test
./benchmark
./alignSequence

// Will run on Nvidia V100 (or P100) using a queuing system.
sbatch barkla_runBenchmark.sh
sbatch barkla_runTest.sh
sbatch barkla_alignSequence.sh

Run locally

1. Check prerequisites.
2. Unzip code.
3. Compile with:

make -j
4. Run:

// Main program
./alignSequence

// test suite
./test

// performance tests
./benchmark

44

Prerequisites

- Nvidia GPU with compute capability >3.0 (Kepler, and later)
- CUDA (tested with 10.1 and 11.1)
- A C++14 compliant host compiler (tested with clang and gcc)
- Make

45

	Introduction
	Sequence alignment
	General Purpose GPU programming
	Aims & Objectives
	Ethical considerations

	Background
	Pairwise sequence alignment
	GPU architecture
	CUDA programming model
	Related work

	Design for parallelism
	Dependencies in the recurrence relation
	Data structures
	Concurrent kernel execution

	Scalable implementation
	Program data flow
	Needleman-Wunsch (NW) GPU kernel
	Smith-Waterman (SW) GPU kernel
	Concurrent kernel orchestration

	Testing & Evaluation
	Correctness verification
	Performance results
	Concurrent kernel evaluation

	Conclusion
	Aims & Objectives
	BCS Criteria
	Self-Reflection & Future Work

	References
	Experimental setup
	sequence-alignment-gpu readme

